ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07417
  4. Cited By
On Connected Sublevel Sets in Deep Learning

On Connected Sublevel Sets in Deep Learning

22 January 2019
Quynh N. Nguyen
ArXivPDFHTML

Papers citing "On Connected Sublevel Sets in Deep Learning"

19 / 19 papers shown
Title
Analyzing the Role of Permutation Invariance in Linear Mode Connectivity
Keyao Zhan
Puheng Li
Lei Wu
MoMe
82
0
0
13 Mar 2025
How Neural Networks Learn the Support is an Implicit Regularization
  Effect of SGD
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
32
1
0
17 Jun 2024
Towards Scalable and Versatile Weight Space Learning
Towards Scalable and Versatile Weight Space Learning
Konstantin Schurholt
Michael W. Mahoney
Damian Borth
50
15
0
14 Jun 2024
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching: With Insights into Other Permutation Search Methods
Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching: With Insights into Other Permutation Search Methods
Akira Ito
Masanori Yamada
Atsutoshi Kumagai
MoMe
64
5
0
06 Feb 2024
Mode Connectivity in Auction Design
Mode Connectivity in Auction Design
Christoph Hertrich
Yixin Tao
László A. Végh
21
1
0
18 May 2023
DART: Diversify-Aggregate-Repeat Training Improves Generalization of
  Neural Networks
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
Samyak Jain
Sravanti Addepalli
P. Sahu
Priyam Dey
R. Venkatesh Babu
MoMe
OOD
43
20
0
28 Feb 2023
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling
  Walks
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
24
17
0
29 Sep 2022
The loss landscape of deep linear neural networks: a second-order
  analysis
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Analyzing Monotonic Linear Interpolation in Neural Network Loss
  Landscapes
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas
Juhan Bae
Michael Ruogu Zhang
Stanislav Fort
R. Zemel
Roger C. Grosse
MoMe
164
28
0
22 Apr 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix
  Factorization
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
Convergence of stochastic gradient descent schemes for
  Lojasiewicz-landscapes
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes
Steffen Dereich
Sebastian Kassing
34
27
0
16 Feb 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for
  Deep ReLU Networks
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
25
81
0
21 Dec 2020
Directional Pruning of Deep Neural Networks
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
18
33
0
16 Jun 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
19
168
0
19 Dec 2019
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka
C. Sminchisescu
27
9
0
16 Dec 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm,
  Optimality, and Generalization
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Global optimality conditions for deep neural networks
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
Benefits of depth in neural networks
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1