ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05335
  4. Cited By
A review of domain adaptation without target labels
v1v2 (latest)

A review of domain adaptation without target labels

16 January 2019
Wouter M. Kouw
Marco Loog
    OODVLM
ArXiv (abs)PDFHTML

Papers citing "A review of domain adaptation without target labels"

15 / 165 papers shown
Title
A Bayesian-inspired, deep learning-based, semi-supervised domain
  adaptation technique for land cover mapping
A Bayesian-inspired, deep learning-based, semi-supervised domain adaptation technique for land cover mapping
Benjamin Lucas
Charlotte Pelletier
Daniel F. Schmidt
Geoffrey I. Webb
Franccois Petitjean
BDL
19
8
0
25 May 2020
Domain Adaptation in Highly Imbalanced and Overlapping Datasets
Domain Adaptation in Highly Imbalanced and Overlapping Datasets
R. Ber
T. Haramaty
OOD
115
2
0
07 May 2020
KinGDOM: Knowledge-Guided DOMain adaptation for sentiment analysis
KinGDOM: Knowledge-Guided DOMain adaptation for sentiment analysis
Deepanway Ghosal
Devamanyu Hazarika
Abhinaba Roy
Navonil Majumder
Rada Mihalcea
Soujanya Poria
105
68
0
02 May 2020
Maximum Density Divergence for Domain Adaptation
Maximum Density Divergence for Domain Adaptation
Jingjing Li
Erpeng Chen
Ding Zhengming
Zhu Lei
Ke Lu
Jikang Cheng
OOD
76
286
0
27 Apr 2020
QuantNet: Transferring Learning Across Systematic Trading Strategies
QuantNet: Transferring Learning Across Systematic Trading Strategies
Adriano Soares Koshiyama
Sebastian Flennerhag
Stefano B. Blumberg
Nikan B. Firoozye
Philip C. Treleaven
AIFinMQ
86
9
0
07 Apr 2020
The Data Representativeness Criterion: Predicting the Performance of
  Supervised Classification Based on Data Set Similarity
The Data Representativeness Criterion: Predicting the Performance of Supervised Classification Based on Data Set Similarity
E. Schat
R. Schoot
Wouter M. Kouw
D. Veen
A. Mendrik
OOD
43
23
0
27 Feb 2020
Deep Domain Adaptive Object Detection: a Survey
Deep Domain Adaptive Object Detection: a Survey
Wanyi Li
Fuyu Li
Yongkang Luo
Peng Wang
Jia sun
ObjD
76
60
0
17 Feb 2020
Time Series Alignment with Global Invariances
Time Series Alignment with Global Invariances
Titouan Vayer
R. Tavenard
Laetitia Chapel
Nicolas Courty
Rémi Flamary
Yann Soullard
AI4TS
86
17
0
10 Feb 2020
Incremental Unsupervised Domain-Adversarial Training of Neural Networks
Incremental Unsupervised Domain-Adversarial Training of Neural Networks
Antonio Javier Gallego
Jorge Calvo-Zaragoza
Robert B. Fisher
CLLOOD
43
35
0
13 Jan 2020
Estimation of Wasserstein distances in the Spiked Transport Model
Estimation of Wasserstein distances in the Spiked Transport Model
Jonathan Niles-Weed
Philippe Rigollet
85
103
0
16 Sep 2019
Back to the Future -- Sequential Alignment of Text Representations
Back to the Future -- Sequential Alignment of Text Representations
Johannes Bjerva
Wouter M. Kouw
Isabelle Augenstein
AI4TS
39
9
0
08 Sep 2019
A cross-center smoothness prior for variational Bayesian brain tissue
  segmentation
A cross-center smoothness prior for variational Bayesian brain tissue segmentation
Wouter M. Kouw
S. Ørting
Jens Petersen
K. S. Pedersen
Marleen de Bruijne
54
8
0
11 Mar 2019
Target Robust Discriminant Analysis
Target Robust Discriminant Analysis
Wouter M. Kouw
Marco Loog
OODTTA
21
2
0
21 Jun 2018
Target contrastive pessimistic risk for robust domain adaptation
Target contrastive pessimistic risk for robust domain adaptation
Wouter M. Kouw
Marco Loog
15
2
0
25 Jun 2017
Adversarial Discriminative Domain Adaptation
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GANOOD
303
4,687
0
17 Feb 2017
Previous
1234