Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.04909
Cited By
Efficient Search for Diverse Coherent Explanations
2 January 2019
Chris Russell
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Search for Diverse Coherent Explanations"
29 / 129 papers shown
Title
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
28
99
0
10 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
33
51
0
03 Sep 2020
DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
Furui Cheng
Yao Ming
Huamin Qu
CML
HAI
11
99
0
19 Aug 2020
Causality Learning: A New Perspective for Interpretable Machine Learning
Guandong Xu
Tri Dung Duong
Q. Li
S. Liu
Xianzhi Wang
XAI
OOD
CML
16
52
0
27 Jun 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
34
19
0
26 Jun 2020
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
50
112
0
11 Jun 2020
An ASP-Based Approach to Counterfactual Explanations for Classification
Leopoldo Bertossi
CML
37
15
0
28 Apr 2020
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
30
252
0
23 Apr 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
27
58
0
11 Feb 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
35
139
0
14 Jan 2020
Auditing and Debugging Deep Learning Models via Decision Boundaries: Individual-level and Group-level Analysis
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
13
5
0
03 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
28
206
0
06 Dec 2019
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
31
87
0
04 Dec 2019
FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles
Ana Lucic
Harrie Oosterhuis
H. Haned
Maarten de Rijke
LRM
14
61
0
27 Nov 2019
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
30
50
0
15 Nov 2019
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
33
199
0
21 Oct 2019
Extracting Incentives from Black-Box Decisions
Yonadav Shavit
William S. Moses
6
9
0
13 Oct 2019
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
13
365
0
20 Sep 2019
Scalable Explanation of Inferences on Large Graphs
Chao Chen
Yuhang Liu
Xi Zhang
Sihong Xie
19
6
0
13 Aug 2019
Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting
Ana Lucic
H. Haned
Maarten de Rijke
12
62
0
17 Jul 2019
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
107
44
0
11 Jun 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
44
318
0
27 May 2019
CERTIFAI: Counterfactual Explanations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models
Shubham Sharma
Jette Henderson
Joydeep Ghosh
11
87
0
20 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
34
994
0
19 May 2019
Multi-Differential Fairness Auditor for Black Box Classifiers
Xavier Gitiaux
Huzefa Rangwala
FaML
19
7
0
18 Mar 2019
Manipulating and Measuring Model Interpretability
Forough Poursabzi-Sangdeh
D. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna M. Wallach
37
685
0
21 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Previous
1
2
3