ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.04909
  4. Cited By
Efficient Search for Diverse Coherent Explanations

Efficient Search for Diverse Coherent Explanations

2 January 2019
Chris Russell
ArXivPDFHTML

Papers citing "Efficient Search for Diverse Coherent Explanations"

29 / 129 papers shown
Title
On Generating Plausible Counterfactual and Semi-Factual Explanations for
  Deep Learning
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
28
99
0
10 Sep 2020
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
33
51
0
03 Sep 2020
DECE: Decision Explorer with Counterfactual Explanations for Machine
  Learning Models
DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
Furui Cheng
Yao Ming
Huamin Qu
CML
HAI
11
99
0
19 Aug 2020
Causality Learning: A New Perspective for Interpretable Machine Learning
Causality Learning: A New Perspective for Interpretable Machine Learning
Guandong Xu
Tri Dung Duong
Q. Li
S. Liu
Xianzhi Wang
XAI
OOD
CML
16
52
0
27 Jun 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
34
19
0
26 Jun 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
50
112
0
11 Jun 2020
An ASP-Based Approach to Counterfactual Explanations for Classification
An ASP-Based Approach to Counterfactual Explanations for Classification
Leopoldo Bertossi
CML
37
15
0
28 Apr 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
30
252
0
23 Apr 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
27
58
0
11 Feb 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials
  for Humans
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
35
139
0
14 Jan 2020
Auditing and Debugging Deep Learning Models via Decision Boundaries:
  Individual-level and Group-level Analysis
Auditing and Debugging Deep Learning Models via Decision Boundaries: Individual-level and Group-level Analysis
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
13
5
0
03 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
28
206
0
06 Dec 2019
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
31
87
0
04 Dec 2019
FOCUS: Flexible Optimizable Counterfactual Explanations for Tree
  Ensembles
FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles
Ana Lucic
Harrie Oosterhuis
H. Haned
Maarten de Rijke
LRM
14
61
0
27 Nov 2019
On the computation of counterfactual explanations -- A survey
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
30
50
0
15 Nov 2019
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
33
199
0
21 Oct 2019
Extracting Incentives from Black-Box Decisions
Extracting Incentives from Black-Box Decisions
Yonadav Shavit
William S. Moses
6
9
0
13 Oct 2019
FACE: Feasible and Actionable Counterfactual Explanations
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
13
365
0
20 Sep 2019
Scalable Explanation of Inferences on Large Graphs
Scalable Explanation of Inferences on Large Graphs
Chao Chen
Yuhang Liu
Xi Zhang
Sihong Xie
19
6
0
13 Aug 2019
Why Does My Model Fail? Contrastive Local Explanations for Retail
  Forecasting
Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting
Ana Lucic
H. Haned
Maarten de Rijke
12
62
0
17 Jul 2019
Issues with post-hoc counterfactual explanations: a discussion
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
107
44
0
11 Jun 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
44
318
0
27 May 2019
CERTIFAI: Counterfactual Explanations for Robustness, Transparency,
  Interpretability, and Fairness of Artificial Intelligence models
CERTIFAI: Counterfactual Explanations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models
Shubham Sharma
Jette Henderson
Joydeep Ghosh
11
87
0
20 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
34
994
0
19 May 2019
Multi-Differential Fairness Auditor for Black Box Classifiers
Multi-Differential Fairness Auditor for Black Box Classifiers
Xavier Gitiaux
Huzefa Rangwala
FaML
19
7
0
18 Mar 2019
Manipulating and Measuring Model Interpretability
Manipulating and Measuring Model Interpretability
Forough Poursabzi-Sangdeh
D. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna M. Wallach
37
685
0
21 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Previous
123