ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.04641
  4. Cited By
SISC: End-to-end Interpretable Discovery Radiomics-Driven Lung Cancer
  Prediction via Stacked Interpretable Sequencing Cells

SISC: End-to-end Interpretable Discovery Radiomics-Driven Lung Cancer Prediction via Stacked Interpretable Sequencing Cells

15 January 2019
Vignesh Sankar
Devinder Kumar
David A Clausi
Graham W. Taylor
Alexander Wong
ArXivPDFHTML

Papers citing "SISC: End-to-end Interpretable Discovery Radiomics-Driven Lung Cancer Prediction via Stacked Interpretable Sequencing Cells"

3 / 3 papers shown
Title
RadFormer: Transformers with Global-Local Attention for Interpretable
  and Accurate Gallbladder Cancer Detection
RadFormer: Transformers with Global-Local Attention for Interpretable and Accurate Gallbladder Cancer Detection
Soumen Basu
Mayank Gupta
Pratyaksha Rana
Pankaj Gupta
Chetan Arora
ViT
MedIm
29
32
0
09 Nov 2022
Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule
  Diagnosis
Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule Diagnosis
Chenglong Wang
Yun-Hui Liu
Feng-Liang Wang
Chengxiu Zhang
Yida Wang
Mei Yuan
Guangze Yang
20
4
0
08 Apr 2022
Explainable artificial intelligence (XAI) in deep learning-based medical
  image analysis
Explainable artificial intelligence (XAI) in deep learning-based medical image analysis
Bas H. M. van der Velden
Hugo J. Kuijf
K. Gilhuijs
M. Viergever
XAI
35
636
0
22 Jul 2021
1