ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.04619
  4. Cited By
Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI
  Cancer Detection

Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI Cancer Detection

15 January 2019
Timo Kohlberger
Yun-hui Liu
M. Moran
Po-Hsuan Cameron Chen
Chen
Trissia Brown
C. Mermel
J. Hipp
Martin C. Stumpe
ArXivPDFHTML

Papers citing "Whole-Slide Image Focus Quality: Automatic Assessment and Impact on AI Cancer Detection"

7 / 7 papers shown
Title
Conditional Synthetic Data Generation for Personal Thermal Comfort
  Models
Conditional Synthetic Data Generation for Personal Thermal Comfort Models
Hari Prasanna Das
C. Spanos
SyDa
AI4CE
16
2
0
10 Mar 2022
Conditional Generation of Medical Time Series for Extrapolation to
  Underrepresented Populations
Conditional Generation of Medical Time Series for Extrapolation to Underrepresented Populations
Simon Bing
Andrea Dittadi
Stefan Bauer
Patrick Schwab
SyDa
20
17
0
20 Jan 2022
Conditional Synthetic Data Generation for Robust Machine Learning
  Applications with Limited Pandemic Data
Conditional Synthetic Data Generation for Robust Machine Learning Applications with Limited Pandemic Data
Hari Prasanna Das
Ryan Tran
Japjot Singh
Xiangyu Yue
G. Tison
Alberto L. Sangiovanni-Vincentelli
C. Spanos
OOD
MedIm
57
51
0
14 Sep 2021
A Comprehensive Review of Computer-aided Whole-slide Image Analysis:
  from Datasets to Feature Extraction, Segmentation, Classification, and
  Detection Approaches
A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches
Chen Li
Xintong Li
M. Rahaman
Xirong Li
Hongzan Sun
...
Yong Zhang
Xiaoqi Li
Jian Wu
Yudong Yao
M. Grzegorzek
35
191
0
21 Feb 2021
FocusLiteNN: High Efficiency Focus Quality Assessment for Digital
  Pathology
FocusLiteNN: High Efficiency Focus Quality Assessment for Digital Pathology
Zhongling Wang
Mahdi S. Hosseini
Adyn Miles
Konstantinos N. Plataniotis
Zhou Wang
4
16
0
11 Jul 2020
Augmenting the Pathology Lab: An Intelligent Whole Slide Image
  Classification System for the Real World
Augmenting the Pathology Lab: An Intelligent Whole Slide Image Classification System for the Real World
Julianna D. Ianni
R. Soans
Sivaramakrishnan Sankarapandian
R. V. Chamarthi
Devi Ayyagari
...
Coleman C. Stavish
K. Motaparthi
C. Cockerell
T. A. Feeser
Jason B. Lee
21
14
0
24 Sep 2019
Synthetic Depth-of-Field with a Single-Camera Mobile Phone
Synthetic Depth-of-Field with a Single-Camera Mobile Phone
Neal Wadhwa
Rahul Garg
David E. Jacobs
Bryan E. Feldman
Nori Kanazawa
Robert E. Carroll
Yair Movshovitz-Attias
Jonathan T. Barron
Yael Pritch
M. Levoy
3DH
MDE
190
176
0
11 Jun 2018
1