ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.04592
  4. Cited By
Interpretable machine learning: definitions, methods, and applications

Interpretable machine learning: definitions, methods, and applications

14 January 2019
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
    XAI
    HAI
ArXivPDFHTML

Papers citing "Interpretable machine learning: definitions, methods, and applications"

29 / 329 papers shown
Title
Understanding complex predictive models with Ghost Variables
Understanding complex predictive models with Ghost Variables
Pedro Delicado
D. Peña
FAtt
34
4
0
13 Dec 2019
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
17
87
0
04 Dec 2019
Discovering Invariances in Healthcare Neural Networks
Discovering Invariances in Healthcare Neural Networks
M. T. Bahadori
Layne Price
OOD
16
0
0
08 Nov 2019
Distilling Black-Box Travel Mode Choice Model for Behavioral
  Interpretation
Distilling Black-Box Travel Mode Choice Model for Behavioral Interpretation
Xilei Zhao
Zhengze Zhou
X. Yan
Pascal Van Hentenryck
21
2
0
30 Oct 2019
A Decision-Theoretic Approach for Model Interpretability in Bayesian
  Framework
A Decision-Theoretic Approach for Model Interpretability in Bayesian Framework
Homayun Afrabandpey
Tomi Peltola
Juho Piironen
Aki Vehtari
Samuel Kaski
17
3
0
21 Oct 2019
Contextual Local Explanation for Black Box Classifiers
Contextual Local Explanation for Black Box Classifiers
Zijian Zhang
Fan Yang
Haofan Wang
Xia Hu
FAtt
6
4
0
02 Oct 2019
Interpretations are useful: penalizing explanations to align neural
  networks with prior knowledge
Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
Laura Rieger
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
19
213
0
30 Sep 2019
Deep Weakly-Supervised Learning Methods for Classification and
  Localization in Histology Images: A Survey
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
25
70
0
08 Sep 2019
SIRUS: Stable and Interpretable RUle Set for Classification
SIRUS: Stable and Interpretable RUle Set for Classification
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
34
9
0
19 Aug 2019
DeepDrawing: A Deep Learning Approach to Graph Drawing
DeepDrawing: A Deep Learning Approach to Graph Drawing
Yong Wang
Zhihua Jin
Qianwen Wang
Weiwei Cui
Tengfei Ma
Huamin Qu
45
55
0
17 Jul 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine
  Learning
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
The Mass, Fake News, and Cognition Security
The Mass, Fake News, and Cognition Security
Bin Guo
Yasan Ding
Yueheng Sun
Shuai Ma
Ke Li
25
24
0
09 Jul 2019
Global Aggregations of Local Explanations for Black Box models
Global Aggregations of Local Explanations for Black Box models
I. V. D. Linden
H. Haned
Evangelos Kanoulas
FAtt
13
63
0
05 Jul 2019
A Debiased MDI Feature Importance Measure for Random Forests
A Debiased MDI Feature Importance Measure for Random Forests
Xiao Li
Yu Wang
Sumanta Basu
Karl Kumbier
Bin Yu
11
83
0
26 Jun 2019
Understanding artificial intelligence ethics and safety
Understanding artificial intelligence ethics and safety
David Leslie
FaML
AI4TS
22
345
0
11 Jun 2019
Proposed Guidelines for the Responsible Use of Explainable Machine
  Learning
Proposed Guidelines for the Responsible Use of Explainable Machine Learning
Patrick Hall
Navdeep Gill
N. Schmidt
SILM
XAI
FaML
6
28
0
08 Jun 2019
Adversarial Explanations for Understanding Image Classification
  Decisions and Improved Neural Network Robustness
Adversarial Explanations for Understanding Image Classification Decisions and Improved Neural Network Robustness
Walt Woods
Jack H Chen
C. Teuscher
AAML
15
46
0
07 Jun 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
44
317
0
27 May 2019
Explainable Machine Learning for Scientific Insights and Discoveries
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
29
659
0
21 May 2019
Disentangled Attribution Curves for Interpreting Random Forests and
  Boosted Trees
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Summer Devlin
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
11
14
0
18 May 2019
LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning
LGM-Net: Learning to Generate Matching Networks for Few-Shot Learning
Huaiyu Li
Weiming Dong
Xing Mei
Chongyang Ma
Feiyue Huang
Bao-Gang Hu
OffRL
32
98
0
15 May 2019
ExplaiNE: An Approach for Explaining Network Embedding-based Link
  Predictions
ExplaiNE: An Approach for Explaining Network Embedding-based Link Predictions
Bo Kang
Jefrey Lijffijt
T. D. Bie
11
21
0
22 Apr 2019
Modeling Heterogeneity in Mode-Switching Behavior Under a
  Mobility-on-Demand Transit System: An Interpretable Machine Learning Approach
Modeling Heterogeneity in Mode-Switching Behavior Under a Mobility-on-Demand Transit System: An Interpretable Machine Learning Approach
Xilei Zhao
X. Yan
Pascal Van Hentenryck
23
11
0
08 Feb 2019
Fooling Neural Network Interpretations via Adversarial Model
  Manipulation
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
10
201
0
06 Feb 2019
Veridical Data Science
Veridical Data Science
Bin Yu
Karl Kumbier
15
162
0
23 Jan 2019
Modeling Stated Preference for Mobility-on-Demand Transit: A Comparison
  of Machine Learning and Logit Models
Modeling Stated Preference for Mobility-on-Demand Transit: A Comparison of Machine Learning and Logit Models
Xilei Zhao
X. Yan
Alan Yu
Pascal Van Hentenryck
19
24
0
04 Nov 2018
Hierarchical interpretations for neural network predictions
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
23
145
0
14 Jun 2018
Structural Compression of Convolutional Neural Networks
Structural Compression of Convolutional Neural Networks
R. Abbasi-Asl
Bin-Xia Yu
25
16
0
20 May 2017
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
295
10,618
0
19 Feb 2017
Previous
1234567