ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.02324
  4. Cited By
Learning with Fenchel-Young Losses
v1v2 (latest)

Learning with Fenchel-Young Losses

8 January 2019
Mathieu Blondel
André F. T. Martins
Vlad Niculae
ArXiv (abs)PDFHTML

Papers citing "Learning with Fenchel-Young Losses"

43 / 43 papers shown
Title
Box-Constrained Softmax Function and Its Application for Post-Hoc Calibration
Box-Constrained Softmax Function and Its Application for Post-Hoc Calibration
Kyohei Atarashi
S. Oyama
Hiromi Arai
H. Kashima
120
0
0
12 Jun 2025
Bregman Conditional Random Fields: Sequence Labeling with Parallelizable Inference Algorithms
Bregman Conditional Random Fields: Sequence Labeling with Parallelizable Inference Algorithms
Caio Corro
Mathieu Lacroix
Joseph Le Roux
20
0
0
31 May 2025
Structured Reinforcement Learning for Combinatorial Decision-Making
Structured Reinforcement Learning for Combinatorial Decision-Making
Heiko Hoppe
Léo Baty
Louis Bouvier
Axel Parmentier
Maximilian Schiffer
OffRL
107
1
0
25 May 2025
Primal-dual algorithm for contextual stochastic combinatorial optimization
Primal-dual algorithm for contextual stochastic combinatorial optimization
Louis Bouvier
Thibault Prunet
Vincent Leclère
Axel Parmentier
70
1
0
07 May 2025
Bandit and Delayed Feedback in Online Structured Prediction
Bandit and Delayed Feedback in Online Structured Prediction
Yuki Shibukawa
Taira Tsuchiya
Shinsaku Sakaue
Kenji Yamanishi
OffRL
102
0
0
26 Feb 2025
Revisiting Online Learning Approach to Inverse Linear Optimization: A Fenchel$-$Young Loss Perspective and Gap-Dependent Regret Analysis
Revisiting Online Learning Approach to Inverse Linear Optimization: A Fenchel−-−Young Loss Perspective and Gap-Dependent Regret Analysis
Shinsaku Sakaue
Han Bao
Taira Tsuchiya
199
2
0
23 Jan 2025
Soft Condorcet Optimization for Ranking of General Agents
Soft Condorcet Optimization for Ranking of General Agents
Marc Lanctot
Kate Larson
Michael Kaisers
Quentin Berthet
I. Gemp
Manfred Diaz
Roberto-Rafael Maura-Rivero
Yoram Bachrach
Anna Koop
Doina Precup
268
0
0
31 Oct 2024
LPGD: A General Framework for Backpropagation through Embedded
  Optimization Layers
LPGD: A General Framework for Backpropagation through Embedded Optimization Layers
Anselm Paulus
Georg Martius
Vít Musil
AI4CE
112
1
0
08 Jul 2024
How to Boost Any Loss Function
How to Boost Any Loss Function
Richard Nock
Yishay Mansour
62
0
0
02 Jul 2024
Building a stable classifier with the inflated argmax
Building a stable classifier with the inflated argmax
Jake A. Soloff
Rina Foygel Barber
Rebecca Willett
327
3
0
22 May 2024
Trading off Consistency and Dimensionality of Convex Surrogates for the Mode
Trading off Consistency and Dimensionality of Convex Surrogates for the Mode
Enrique Nueve
Bo Waggoner
Dhamma Kimpara
Jessie Finocchiaro
91
1
0
16 Feb 2024
On the Robustness of Decision-Focused Learning
On the Robustness of Decision-Focused Learning
Yehya Farhat
75
0
0
28 Nov 2023
When Does Optimizing a Proper Loss Yield Calibration?
When Does Optimizing a Proper Loss Yield Calibration?
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Preetum Nakkiran
91
28
0
30 May 2023
Differentiable Clustering with Perturbed Spanning Forests
Differentiable Clustering with Perturbed Spanning Forests
Lawrence Stewart
Francis R. Bach
Felipe Llinares-López
Quentin Berthet
99
11
0
25 May 2023
Loss Minimization Yields Multicalibration for Large Neural Networks
Loss Minimization Yields Multicalibration for Large Neural Networks
Jarosław Błasiok
Parikshit Gopalan
Lunjia Hu
Adam Tauman Kalai
Preetum Nakkiran
FaMLUQCV
93
13
0
19 Apr 2023
A Statistical Learning Take on the Concordance Index for Survival
  Analysis
A Statistical Learning Take on the Concordance Index for Survival Analysis
Alex Nowak-Vila
K. Elgui
Geneviève Robin
133
1
0
23 Feb 2023
Maximum Optimality Margin: A Unified Approach for Contextual Linear
  Programming and Inverse Linear Programming
Maximum Optimality Margin: A Unified Approach for Contextual Linear Programming and Inverse Linear Programming
Chunlin Sun
Shang Liu
Xiaocheng Li
96
10
0
26 Jan 2023
On the inconsistency of separable losses for structured prediction
On the inconsistency of separable losses for structured prediction
Caio Corro
46
3
0
25 Jan 2023
SIMPLE: A Gradient Estimator for $k$-Subset Sampling
SIMPLE: A Gradient Estimator for kkk-Subset Sampling
Kareem Ahmed
Zhe Zeng
Mathias Niepert
Guy Van den Broeck
BDL
136
27
0
04 Oct 2022
Learning with Combinatorial Optimization Layers: a Probabilistic
  Approach
Learning with Combinatorial Optimization Layers: a Probabilistic Approach
Guillaume Dalle
Léo Baty
Louis Bouvier
Axel Parmentier
AI4CE
74
36
0
27 Jul 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
100
32
0
18 Jul 2022
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Tim Tsz-Kit Lau
Han Liu
127
7
0
10 Jul 2022
PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for
  Linear and Integer Programming
PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for Linear and Integer Programming
Bo Tang
Elias Boutros Khalil
87
33
0
28 Jun 2022
Beyond Just Vision: A Review on Self-Supervised Representation Learning
  on Multimodal and Temporal Data
Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data
Shohreh Deldari
Hao Xue
Aaqib Saeed
Jiayuan He
Daniel V. Smith
Flora D. Salim
AI4TS
75
37
0
06 Jun 2022
Contrasting quadratic assignments for set-based representation learning
Contrasting quadratic assignments for set-based representation learning
A. Moskalev
Ivan Sosnovik
Volker Fischer
A. Smeulders
SSL
97
9
0
31 May 2022
Learning Energy Networks with Generalized Fenchel-Young Losses
Learning Energy Networks with Generalized Fenchel-Young Losses
Mathieu Blondel
Felipe Llinares-López
Robert Dadashi
Léonard Hussenot
Matthieu Geist
95
7
0
19 May 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
166
48
0
01 Feb 2022
Sparse Communication via Mixed Distributions
Sparse Communication via Mixed Distributions
António Farinhas
Wilker Aziz
Vlad Niculae
André F. T. Martins
61
3
0
05 Aug 2021
Multimodal Continuous Visual Attention Mechanisms
Multimodal Continuous Visual Attention Mechanisms
António Farinhas
André F. T. Martins
P. Aguiar
59
7
0
07 Apr 2021
Reconciling the Discrete-Continuous Divide: Towards a Mathematical
  Theory of Sparse Communication
Reconciling the Discrete-Continuous Divide: Towards a Mathematical Theory of Sparse Communication
André F. T. Martins
67
1
0
01 Apr 2021
Self-Supervised Learning of Audio Representations from Permutations with
  Differentiable Ranking
Self-Supervised Learning of Audio Representations from Permutations with Differentiable Ranking
Andrew N. Carr
Quentin Berthet
Mathieu Blondel
O. Teboul
Neil Zeghidour
SSL
75
25
0
17 Mar 2021
Lower-Bounded Proper Losses for Weakly Supervised Classification
Lower-Bounded Proper Losses for Weakly Supervised Classification
Shuhei M. Yoshida
Takashi Takenouchi
Masashi Sugiyama
25
2
0
04 Mar 2021
Moreau-Yosida $f$-divergences
Moreau-Yosida fff-divergences
Dávid Terjék
60
6
0
26 Feb 2021
Fast rates in structured prediction
Fast rates in structured prediction
Vivien A. Cabannes
Alessandro Rudi
Francis R. Bach
423
19
0
01 Feb 2021
A contribution to Optimal Transport on incomparable spaces
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
73
20
0
09 Nov 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
101
88
0
15 Jun 2020
Fast Differentiable Sorting and Ranking
Fast Differentiable Sorting and Ranking
Mathieu Blondel
O. Teboul
Quentin Berthet
Josip Djolonga
212
235
0
20 Feb 2020
Learning with Differentiable Perturbed Optimizers
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
94
109
0
20 Feb 2020
Structured Prediction with Projection Oracles
Structured Prediction with Projection Oracles
Mathieu Blondel
118
33
0
24 Oct 2019
Semantic Role Labeling with Iterative Structure Refinement
Semantic Role Labeling with Iterative Structure Refinement
Chunchuan Lyu
Shay B. Cohen
Ivan Titov
OffRL
77
22
0
07 Sep 2019
The Limited Multi-Label Projection Layer
The Limited Multi-Label Projection Layer
Brandon Amos
V. Koltun
J. Zico Kolter
95
36
0
20 Jun 2019
Geometric Losses for Distributional Learning
Geometric Losses for Distributional Learning
A. Mensch
Mathieu Blondel
Gabriel Peyré
143
16
0
15 May 2019
Learning Classifiers with Fenchel-Young Losses: Generalized Entropies,
  Margins, and Algorithms
Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms
Mathieu Blondel
André F. T. Martins
Vlad Niculae
FedML
67
40
0
24 May 2018
1