Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.02220
Cited By
Deep Neural Network Approximation Theory
8 January 2019
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Network Approximation Theory"
50 / 105 papers shown
Title
Super-fast rates of convergence for Neural Networks Classifiers under the Hard Margin Condition
Nathanael Tepakbong
Ding-Xuan Zhou
Xiang Zhou
46
0
0
13 May 2025
Deep Sturm--Liouville: From Sample-Based to 1D Regularization with Learnable Orthogonal Basis Functions
David Vigouroux
Joseba Dalmau
Louis Bethune
Victor Boutin
26
0
0
09 Apr 2025
Nonlocal techniques for the analysis of deep ReLU neural network approximations
Cornelia Schneider
Mario Ullrich
Jan Vybiral
18
0
0
07 Apr 2025
Feature Qualification by Deep Nets: A Constructive Approach
Feilong Cao
Shao-Bo Lin
MLT
34
0
0
24 Mar 2025
Theory-to-Practice Gap for Neural Networks and Neural Operators
Philipp Grohs
S. Lanthaler
Margaret Trautner
46
1
0
23 Mar 2025
Orthogonal Representation Learning for Estimating Causal Quantities
Valentyn Melnychuk
Dennis Frauen
Jonas Schweisthal
Stefan Feuerriegel
CML
OOD
BDL
61
2
0
06 Feb 2025
Can neural operators always be continuously discretized?
Takashi Furuya
Michael Puthawala
Maarten V. de Hoop
Matti Lassas
66
0
0
04 Dec 2024
3D UAV Trajectory Planning for IoT Data Collection via Matrix-Based Evolutionary Computation
Pei-Fa Sun
Yujae Song
Kang-Yu Gao
Yu-Kai Wang
Changjun Zhou
Sang-Woon Jeon
Jun Zhang
19
0
0
08 Oct 2024
Deep non-parametric logistic model with case-control data and external summary information
Hengchao Shi
M. Zheng
Wen Yu
35
0
0
03 Sep 2024
Solving The Quantum Many-Body Hamiltonian Learning Problem with Neural Differential Equations
Timothy Heightman
Edward Jiang
Antonio Acín
AI4CE
51
4
0
16 Aug 2024
Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through Quantization
Holger Boche
Vít Fojtík
Adalbert Fono
Gitta Kutyniok
35
0
0
12 Aug 2024
Operator Learning of Lipschitz Operators: An Information-Theoretic Perspective
Samuel Lanthaler
47
3
0
26 Jun 2024
On the growth of the parameters of approximating ReLU neural networks
Erion Morina
Martin Holler
37
0
0
21 Jun 2024
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation
Madison Cooley
Shandian Zhe
Robert M. Kirby
Varun Shankar
70
1
0
04 Jun 2024
Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics
Simone Brugiapaglia
N. Dexter
Samir Karam
Weiqi Wang
AI4CE
DiffM
43
1
0
03 Jun 2024
Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces
Owen Davis
Gianluca Geraci
Mohammad Motamed
46
2
0
10 May 2024
Pragmatist Intelligence: Where the Principle of Usefulness Can Take ANNs
Antonio Bikić
Sayan Mukherjee
20
0
0
07 May 2024
Understanding the Difficulty of Solving Cauchy Problems with PINNs
Tao Wang
Bo Zhao
Sicun Gao
Rose Yu
49
1
0
04 May 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
42
4
0
04 Apr 2024
A practical existence theorem for reduced order models based on convolutional autoencoders
N. R. Franco
Simone Brugiapaglia
AI4CE
33
4
0
01 Feb 2024
Deep Neural Networks: A Formulation Via Non-Archimedean Analysis
W. A. Zúniga-Galindo
AI4CE
14
1
0
31 Jan 2024
Extracting Formulae in Many-Valued Logic from Deep Neural Networks
Yani Zhang
Helmut Bölcskei
24
0
0
22 Jan 2024
Do stable neural networks exist for classification problems? -- A new view on stability in AI
Z. N. D. Liu
A. C. Hansen
30
0
0
15 Jan 2024
Universal Consistency of Wide and Deep ReLU Neural Networks and Minimax Optimal Convergence Rates for Kolmogorov-Donoho Optimal Function Classes
Hyunouk Ko
Xiaoming Huo
42
1
0
08 Jan 2024
Sampling Complexity of Deep Approximation Spaces
Ahmed Abdeljawad
Philipp Grohs
26
1
0
20 Dec 2023
Deep State-Space Model for Predicting Cryptocurrency Price
Shalini Sharma
A. Majumdar
Émilie Chouzenoux
Victor Elvira
28
0
0
21 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
42
4
0
23 Oct 2023
Residual Multi-Fidelity Neural Network Computing
Owen Davis
Mohammad Motamed
Raúl Tempone
37
1
0
05 Oct 2023
On Excess Risk Convergence Rates of Neural Network Classifiers
Hyunouk Ko
Namjoon Suh
X. Huo
21
2
0
26 Sep 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Approximation Results for Gradient Descent trained Neural Networks
G. Welper
48
0
0
09 Sep 2023
A numerical approach for the fractional Laplacian via deep neural networks
Nicolás Valenzuela
34
3
0
30 Aug 2023
What and How does In-Context Learning Learn? Bayesian Model Averaging, Parameterization, and Generalization
Yufeng Zhang
Fengzhuo Zhang
Zhuoran Yang
Zhaoran Wang
BDL
36
65
0
30 May 2023
Error Analysis of Physics-Informed Neural Networks for Approximating Dynamic PDEs of Second Order in Time
Y. Qian
Yongchao Zhang
Yuanfei Huang
S. Dong
PINN
21
1
0
22 Mar 2023
Topological Learning in Multi-Class Data Sets
Christopher H. Griffin
Trevor K. Karn
Benjamin Apple
AI4CE
28
0
0
23 Jan 2023
Approaching Globally Optimal Energy Efficiency in Interference Networks via Machine Learning
Bile Peng
Karl-Ludwig Besser
Ramprasad Raghunath
Eduard Axel Jorswieck
16
2
0
25 Nov 2022
Universal Time-Uniform Trajectory Approximation for Random Dynamical Systems with Recurrent Neural Networks
A. Bishop
42
1
0
15 Nov 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
28
14
0
24 Oct 2022
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
59
24
0
03 Oct 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
56
6
0
17 Sep 2022
Error Controlled Feature Selection for Ultrahigh Dimensional and Highly Correlated Feature Space Using Deep Learning
Arkaprabha Ganguli
D. Todem
T. Maiti
OOD
23
0
0
15 Sep 2022
From Monte Carlo to neural networks approximations of boundary value problems
L. Beznea
Iulian Cîmpean
Oana Lupascu-Stamate
Ionel Popescu
A. Zarnescu
22
1
0
03 Sep 2022
Stochastic Scaling in Loss Functions for Physics-Informed Neural Networks
Ethan A Mills
Alexey Pozdnyakov
16
1
0
07 Aug 2022
The BUTTER Zone: An Empirical Study of Training Dynamics in Fully Connected Neural Networks
Charles Edison Tripp
J. Perr-Sauer
L. Hayne
M. Lunacek
Jamil Gafur
AI4CE
28
1
0
25 Jul 2022
Approximation Power of Deep Neural Networks: an explanatory mathematical survey
Mohammad Motamed
12
3
0
19 Jul 2022
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
15
10
0
15 Jul 2022
Adaptive deep learning for nonlinear time series models
Daisuke Kurisu
Riku Fukami
Yuta Koike
AI4TS
16
5
0
06 Jul 2022
Data-driven reduced order models using invariant foliations, manifolds and autoencoders
R. Szalai
AI4CE
14
9
0
24 Jun 2022
Compressive Fourier collocation methods for high-dimensional diffusion equations with periodic boundary conditions
Weiqi Wang
Simone Brugiapaglia
27
2
0
02 Jun 2022
Learning ReLU networks to high uniform accuracy is intractable
Julius Berner
Philipp Grohs
F. Voigtlaender
32
4
0
26 May 2022
1
2
3
Next