ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.11317
  4. Cited By
Support Vector Guided Softmax Loss for Face Recognition

Support Vector Guided Softmax Loss for Face Recognition

29 December 2018
Xiaobo Wang
Shuo Wang
Shifeng Zhang
Tianyu Fu
Hailin Shi
Tao Mei
    CVBM
ArXivPDFHTML

Papers citing "Support Vector Guided Softmax Loss for Face Recognition"

7 / 7 papers shown
Title
DigiFace-1M: 1 Million Digital Face Images for Face Recognition
DigiFace-1M: 1 Million Digital Face Images for Face Recognition
Gwangbin Bae
M. D. L. Gorce
T. Baltrušaitis
Charlie Hewitt
Dong Chen
Julien P. C. Valentin
R. Cipolla
Jingjing Shen
CVBM
33
111
0
05 Oct 2022
An Efficient Training Approach for Very Large Scale Face Recognition
An Efficient Training Approach for Very Large Scale Face Recognition
Kai Wang
Shuo Wang
Panpan Zhang
Zhipeng Zhou
Zheng Zhu
Xiaobo Wang
Xiaojiang Peng
Baigui Sun
Hao Li
Yang You
CVBM
56
23
0
21 May 2021
Loss Function Search for Face Recognition
Loss Function Search for Face Recognition
Xiaobo Wang
Shuo Wang
Cheng Chi
Shifeng Zhang
Tao Mei
CVBM
30
48
0
10 Jul 2020
More Information Supervised Probabilistic Deep Face Embedding Learning
More Information Supervised Probabilistic Deep Face Embedding Learning
Ying Huang
Shangfeng Qiu
Wenwei Zhang
Xianghui Luo
Jinzhuo Wang
CVBM
24
2
0
08 Jun 2020
Learning Meta Face Recognition in Unseen Domains
Learning Meta Face Recognition in Unseen Domains
Jianzhu Guo
Xiangyu Zhu
Chenxu Zhao
Dong Cao
Zhen Lei
Stan Z. Li
CVBM
OOD
22
142
0
17 Mar 2020
A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing
A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing
Shifeng Zhang
Xiaobo Wang
Ajian Liu
Chenxu Zhao
Jun Wan
Sergio Escalera
Hailin Shi
Zezheng Wang
Stan Z. Li
AAML
CVBM
33
153
0
02 Dec 2018
Deeply learned face representations are sparse, selective, and robust
Deeply learned face representations are sparse, selective, and robust
Yi Sun
Xiaogang Wang
Xiaoou Tang
CVBM
252
921
0
03 Dec 2014
1