ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.10924
  4. Cited By
Improving the Interpretability of Deep Neural Networks with Knowledge
  Distillation

Improving the Interpretability of Deep Neural Networks with Knowledge Distillation

28 December 2018
Xuan Liu
Xiaoguang Wang
Stan Matwin
    HAI
ArXivPDFHTML

Papers citing "Improving the Interpretability of Deep Neural Networks with Knowledge Distillation"

22 / 22 papers shown
Title
Interpret the Predictions of Deep Networks via Re-Label Distillation
Interpret the Predictions of Deep Networks via Re-Label Distillation
Yingying Hua
Shiming Ge
Daichi Zhang
FAtt
40
0
0
20 Sep 2024
Knowledge Distillation of Convolutional Neural Networks through Feature
  Map Transformation using Decision Trees
Knowledge Distillation of Convolutional Neural Networks through Feature Map Transformation using Decision Trees
Maddimsetti Srinivas
Debdoot Sheet
FAtt
37
0
0
10 Mar 2024
Active Globally Explainable Learning for Medical Images via Class
  Association Embedding and Cyclic Adversarial Generation
Active Globally Explainable Learning for Medical Images via Class Association Embedding and Cyclic Adversarial Generation
Ruitao Xie
Jingbang Chen
Limai Jiang
Ru Xiao
Yi-Lun Pan
Yunpeng Cai
GAN
MedIm
27
0
0
12 Jun 2023
Using Knowledge Distillation to improve interpretable models in a retail
  banking context
Using Knowledge Distillation to improve interpretable models in a retail banking context
Maxime Biehler
Mohamed Guermazi
Célim Starck
62
2
0
30 Sep 2022
Towards Explaining Autonomy with Verbalised Decision Tree States
Towards Explaining Autonomy with Verbalised Decision Tree States
K. Gavriilidis
A. Munafò
Helen F. Hastie
Conlan Cesar
M. Defilippo
M. Benjamin
19
2
0
28 Sep 2022
Variance Tolerance Factors For Interpreting ALL Neural Networks
Variance Tolerance Factors For Interpreting ALL Neural Networks
Sichao Li
Amanda S. Barnard
FAtt
32
3
0
28 Sep 2022
Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems
Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems
Arne Gevaert
Jonathan Peck
Yvan Saeys
36
1
0
07 Sep 2022
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Causality-Inspired Taxonomy for Explainable Artificial Intelligence
Pedro C. Neto
Tiago B. Gonccalves
João Ribeiro Pinto
W. Silva
Ana F. Sequeira
Arun Ross
Jaime S. Cardoso
XAI
43
12
0
19 Aug 2022
Implementing Reinforcement Learning Datacenter Congestion Control in
  NVIDIA NICs
Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs
Benjamin Fuhrer
Yuval Shpigelman
Chen Tessler
Shie Mannor
Gal Chechik
E. Zahavi
Gal Dalal
33
4
0
05 Jul 2022
Evaluating Feature Attribution Methods in the Image Domain
Evaluating Feature Attribution Methods in the Image Domain
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
27
22
0
22 Feb 2022
Deeply Explain CNN via Hierarchical Decomposition
Deeply Explain CNN via Hierarchical Decomposition
Mingg-Ming Cheng
Peng-Tao Jiang
Linghao Han
Liang Wang
Philip Torr
FAtt
53
15
0
23 Jan 2022
Explain, Edit, and Understand: Rethinking User Study Design for
  Evaluating Model Explanations
Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations
Siddhant Arora
Danish Pruthi
Norman M. Sadeh
William W. Cohen
Zachary Chase Lipton
Graham Neubig
FAtt
40
38
0
17 Dec 2021
A Review of Some Techniques for Inclusion of Domain-Knowledge into Deep
  Neural Networks
A Review of Some Techniques for Inclusion of Domain-Knowledge into Deep Neural Networks
T. Dash
Sharad Chitlangia
Aditya Ahuja
A. Srinivasan
40
127
0
21 Jul 2021
On Guaranteed Optimal Robust Explanations for NLP Models
On Guaranteed Optimal Robust Explanations for NLP Models
Emanuele La Malfa
A. Zbrzezny
Rhiannon Michelmore
Nicola Paoletti
Marta Z. Kwiatkowska
FAtt
19
47
0
08 May 2021
GRIT: Fast, Interpretable, and Verifiable Goal Recognition with Learned
  Decision Trees for Autonomous Driving
GRIT: Fast, Interpretable, and Verifiable Goal Recognition with Learned Decision Trees for Autonomous Driving
Cillian Brewitt
Balint Gyevnar
Samuel Garcin
Stefano V. Albrecht
18
30
0
10 Mar 2021
Incorporating Domain Knowledge into Deep Neural Networks
Incorporating Domain Knowledge into Deep Neural Networks
T. Dash
Sharad Chitlangia
Aditya Ahuja
A. Srinivasan
AI4CE
24
9
0
27 Feb 2021
Fast, Structured Clinical Documentation via Contextual Autocomplete
Fast, Structured Clinical Documentation via Contextual Autocomplete
D. Gopinath
Monica Agrawal
Luke S. Murray
Steven Horng
David R Karger
David Sontag
26
13
0
29 Jul 2020
Knowledge Distillation: A Survey
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
28
2,857
0
09 Jun 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
xCos: An Explainable Cosine Metric for Face Verification Task
xCos: An Explainable Cosine Metric for Face Verification Task
Yu-sheng Lin
Zhe-Yu Liu
Yu-An Chen
Yu-Siang Wang
Ya-Liang Chang
Winston H. Hsu
CVBM
33
46
0
11 Mar 2020
Slices of Attention in Asynchronous Video Job Interviews
Slices of Attention in Asynchronous Video Job Interviews
Léo Hemamou
G. Felhi
Jean-Claude Martin
Chloé Clavel
15
20
0
19 Sep 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1