Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.10044
Cited By
Trainable Projected Gradient Detector for Massive Overloaded MIMO Channels: Data-driven Tuning Approach
25 December 2018
Satoshi Takabe
Masayuki Imanishi
T. Wadayama
Ryo Hayakawa
Kazunori Hayashi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Trainable Projected Gradient Detector for Massive Overloaded MIMO Channels: Data-driven Tuning Approach"
10 / 10 papers shown
Title
Accelerating Convergence of Stein Variational Gradient Descent via Deep Unfolding
Yuya Kawamura
Satoshi Takabe
BDL
34
0
0
23 Feb 2024
Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless Systems
Ramoni O. Adeogun
16
1
0
20 Jun 2023
Hubbard-Stratonovich Detector for Simple Trainable MIMO Signal Detection
Satoshi Takabe
Takashi Abe
22
1
0
09 Feb 2023
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
33
318
0
15 Dec 2020
Convergence Acceleration via Chebyshev Step: Plausible Interpretation of Deep-Unfolded Gradient Descent
Satoshi Takabe
T. Wadayama
23
10
0
26 Oct 2020
Deep unfolding of the weighted MMSE beamforming algorithm
Lissy Pellaco
M. Bengtsson
Joakim Jaldén
27
21
0
15 Jun 2020
Complexity-Scalable Neural Network Based MIMO Detection With Learnable Weight Scaling
A. Mohammad
C. Masouros
Y. Andreopoulos
24
28
0
12 Sep 2019
Deep Learning for CSI Feedback Based on Superimposed Coding
Chaojin Qing
Bin Cai
Qingyao Yang
Jiafan Wang
Chuan Huang
19
43
0
27 Jul 2019
Model-Driven Deep Learning for MIMO Detection
Hengtao He
Chao-Kai Wen
Shi Jin
Geoffrey Ye Li
18
18
0
22 Jul 2019
Learning to Decode Linear Codes Using Deep Learning
Eliya Nachmani
Yair Be’ery
D. Burshtein
95
456
0
16 Jul 2016
1