Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.07956
Cited By
On Lazy Training in Differentiable Programming
19 December 2018
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Lazy Training in Differentiable Programming"
50 / 246 papers shown
Title
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
41
12
0
12 Jul 2023
The RL Perceptron: Generalisation Dynamics of Policy Learning in High Dimensions
Nishil Patel
Sebastian Lee
Stefano Sarao Mannelli
Sebastian Goldt
Adrew Saxe
OffRL
36
3
0
17 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
29
4
0
26 May 2023
Tight conditions for when the NTK approximation is valid
Enric Boix-Adserà
Etai Littwin
35
0
0
22 May 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
51
113
0
22 May 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
42
5
0
20 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
47
13
0
11 May 2023
Infinitely wide limits for deep Stable neural networks: sub-linear, linear and super-linear activation functions
Alberto Bordino
Stefano Favaro
S. Fortini
32
7
0
08 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
38
29
0
06 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
26
1
0
06 Apr 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
42
35
0
02 Apr 2023
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
Xuchen You
Shouvanik Chakrabarti
Boyang Chen
Xiaodi Wu
42
10
0
26 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
46
0
0
24 Mar 2023
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Zheng Chen
Yuqing Li
Tao Luo
Zhaoguang Zhou
Z. Xu
MLT
AI4CE
49
9
0
12 Mar 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
37
29
0
03 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
33
14
0
03 Mar 2023
The Ladder in Chaos: A Simple and Effective Improvement to General DRL Algorithms by Policy Path Trimming and Boosting
Hongyao Tang
Mengdi Zhang
Jianye Hao
28
1
0
02 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
39
16
0
20 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
42
0
13 Feb 2023
How to prepare your task head for finetuning
Yi Ren
Shangmin Guo
Wonho Bae
Danica J. Sutherland
24
14
0
11 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
46
10
0
03 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
67
2
0
02 Feb 2023
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Antonio Sclocchi
Mario Geiger
M. Wyart
40
6
0
31 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
23
0
0
26 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
36
61
0
26 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum Machine Learning
Massimiliano Incudini
Michele Grossi
Antonio Mandarino
S. Vallecorsa
Alessandra Di Pierro
David Windridge
38
6
0
22 Dec 2022
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
38
36
0
14 Dec 2022
Selective Amnesia: On Efficient, High-Fidelity and Blind Suppression of Backdoor Effects in Trojaned Machine Learning Models
Rui Zhu
Di Tang
Siyuan Tang
Xiaofeng Wang
Haixu Tang
AAML
FedML
37
13
0
09 Dec 2022
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
Kangyu Weng
Aohua Cheng
Ziyang Zhang
Pei Sun
Yang Tian
53
2
0
04 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
A Kernel Perspective of Skip Connections in Convolutional Networks
Daniel Barzilai
Amnon Geifman
Meirav Galun
Ronen Basri
23
12
0
27 Nov 2022
Why Neural Networks Work
Sayan Mukherjee
Bernardo A. Huberman
19
2
0
26 Nov 2022
Linear Interpolation In Parameter Space is Good Enough for Fine-Tuned Language Models
Mark Rofin
Nikita Balagansky
Daniil Gavrilov
MoMe
KELM
38
5
0
22 Nov 2022
Do highly over-parameterized neural networks generalize since bad solutions are rare?
Julius Martinetz
T. Martinetz
30
1
0
07 Nov 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
27
5
0
28 Oct 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
36
13
0
21 Oct 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
31
10
0
21 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
47
18
0
11 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
58
16
0
10 Oct 2022
Continual task learning in natural and artificial agents
Timo Flesch
Andrew M. Saxe
Christopher Summerfield
CLL
43
24
0
10 Oct 2022
On skip connections and normalisation layers in deep optimisation
L. MacDonald
Jack Valmadre
Hemanth Saratchandran
Simon Lucey
ODL
34
1
0
10 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
34
5
0
19 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
56
6
0
17 Sep 2022
Previous
1
2
3
4
5
Next