ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.07956
  4. Cited By
On Lazy Training in Differentiable Programming

On Lazy Training in Differentiable Programming

19 December 2018
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
ArXivPDFHTML

Papers citing "On Lazy Training in Differentiable Programming"

50 / 246 papers shown
Title
Quantitative CLTs in Deep Neural Networks
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
41
12
0
12 Jul 2023
The RL Perceptron: Generalisation Dynamics of Policy Learning in High
  Dimensions
The RL Perceptron: Generalisation Dynamics of Policy Learning in High Dimensions
Nishil Patel
Sebastian Lee
Stefano Sarao Mannelli
Sebastian Goldt
Adrew Saxe
OffRL
36
3
0
17 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural
  Networks
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
29
4
0
26 May 2023
Tight conditions for when the NTK approximation is valid
Tight conditions for when the NTK approximation is valid
Enric Boix-Adserà
Etai Littwin
35
0
0
22 May 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained
  Models
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
51
113
0
22 May 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK
  Features
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
42
5
0
20 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
47
13
0
11 May 2023
Infinitely wide limits for deep Stable neural networks: sub-linear,
  linear and super-linear activation functions
Infinitely wide limits for deep Stable neural networks: sub-linear, linear and super-linear activation functions
Alberto Bordino
Stefano Favaro
S. Fortini
32
7
0
08 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean
  Field Neural Networks
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
38
29
0
06 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization
  to the NTK geometry of training
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
26
1
0
06 Apr 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
42
35
0
02 Apr 2023
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural
  Tangent Kernels
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
Xuchen You
Shouvanik Chakrabarti
Boyang Chen
Xiaodi Wu
42
10
0
26 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher
  Framework
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
46
0
0
24 Mar 2023
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Zheng Chen
Yuqing Li
Tao Luo
Zhaoguang Zhou
Z. Xu
MLT
AI4CE
49
9
0
12 Mar 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
37
29
0
03 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving
  Data Generation
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
33
14
0
03 Mar 2023
The Ladder in Chaos: A Simple and Effective Improvement to General DRL
  Algorithms by Policy Path Trimming and Boosting
The Ladder in Chaos: A Simple and Effective Improvement to General DRL Algorithms by Policy Path Trimming and Boosting
Hongyao Tang
Mengdi Zhang
Jianye Hao
28
1
0
02 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for
  Learning a Single Neuron
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
39
16
0
20 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
42
0
13 Feb 2023
How to prepare your task head for finetuning
How to prepare your task head for finetuning
Yi Ren
Shangmin Guo
Wonho Bae
Danica J. Sutherland
24
14
0
11 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features
  and Neural Tangent Kernels
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
46
10
0
03 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and
  Dataset Distillation
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
67
2
0
02 Feb 2023
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Antonio Sclocchi
Mario Geiger
M. Wyart
40
6
0
31 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
23
0
0
26 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
36
61
0
26 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent
  Variable Models
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
  Deep Quantum Machine Learning
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum Machine Learning
Massimiliano Incudini
Michele Grossi
Antonio Mandarino
S. Vallecorsa
Alessandra Di Pierro
David Windridge
38
6
0
22 Dec 2022
Learning threshold neurons via the "edge of stability"
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
38
36
0
14 Dec 2022
Selective Amnesia: On Efficient, High-Fidelity and Blind Suppression of
  Backdoor Effects in Trojaned Machine Learning Models
Selective Amnesia: On Efficient, High-Fidelity and Blind Suppression of Backdoor Effects in Trojaned Machine Learning Models
Rui Zhu
Di Tang
Siyuan Tang
Xiaofeng Wang
Haixu Tang
AAML
FedML
37
13
0
09 Dec 2022
Statistical Physics of Deep Neural Networks: Initialization toward
  Optimal Channels
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
Kangyu Weng
Aohua Cheng
Ziyang Zhang
Pei Sun
Yang Tian
53
2
0
04 Dec 2022
Infinite-width limit of deep linear neural networks
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
A Kernel Perspective of Skip Connections in Convolutional Networks
A Kernel Perspective of Skip Connections in Convolutional Networks
Daniel Barzilai
Amnon Geifman
Meirav Galun
Ronen Basri
23
12
0
27 Nov 2022
Why Neural Networks Work
Why Neural Networks Work
Sayan Mukherjee
Bernardo A. Huberman
19
2
0
26 Nov 2022
Linear Interpolation In Parameter Space is Good Enough for Fine-Tuned
  Language Models
Linear Interpolation In Parameter Space is Good Enough for Fine-Tuned Language Models
Mark Rofin
Nikita Balagansky
Daniil Gavrilov
MoMe
KELM
38
5
0
22 Nov 2022
Do highly over-parameterized neural networks generalize since bad
  solutions are rare?
Do highly over-parameterized neural networks generalize since bad solutions are rare?
Julius Martinetz
T. Martinetz
30
1
0
07 Nov 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
  Neural Networks
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
27
5
0
28 Oct 2022
Learning Single-Index Models with Shallow Neural Networks
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial
  Training
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
36
13
0
21 Oct 2022
When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work
When Expressivity Meets Trainability: Fewer than nnn Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
31
10
0
21 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
47
18
0
11 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
58
16
0
10 Oct 2022
Continual task learning in natural and artificial agents
Continual task learning in natural and artificial agents
Timo Flesch
Andrew M. Saxe
Christopher Summerfield
CLL
43
24
0
10 Oct 2022
On skip connections and normalisation layers in deep optimisation
On skip connections and normalisation layers in deep optimisation
L. MacDonald
Jack Valmadre
Hemanth Saratchandran
Simon Lucey
ODL
34
1
0
10 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with
  SGD
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule
  based on example difficulty
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
34
5
0
19 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural
  Networks in $1d$
Approximation results for Gradient Descent trained Shallow Neural Networks in 1d1d1d
R. Gentile
G. Welper
ODL
56
6
0
17 Sep 2022
Previous
12345
Next