Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.07544
Cited By
v1
v2 (latest)
Information-Directed Exploration for Deep Reinforcement Learning
18 December 2018
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Information-Directed Exploration for Deep Reinforcement Learning"
32 / 32 papers shown
Title
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
488
2
0
14 Mar 2025
Learning to Assist Humans without Inferring Rewards
Vivek Myers
Evan Ellis
Sergey Levine
Benjamin Eysenbach
Anca Dragan
110
4
0
17 Jan 2025
Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
Zifan Liu
Xinran Li
Shibo Chen
Gen Li
Jiashuo Jiang
Jun Zhang
66
0
0
26 Jun 2024
Implicit Quantile Networks for Distributional Reinforcement Learning
Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
OffRL
137
532
0
14 Jun 2018
The Potential of the Return Distribution for Exploration in RL
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
55
9
0
11 Jun 2018
Exploration by Distributional Reinforcement Learning
Yunhao Tang
Shipra Agrawal
OOD
66
31
0
04 May 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
74
366
0
26 Feb 2018
Efficient Exploration through Bayesian Deep Q-Networks
Kamyar Azizzadenesheli
Anima Anandkumar
OffRL
BDL
77
163
0
13 Feb 2018
Information Directed Sampling and Bandits with Heteroscedastic Noise
Johannes Kirschner
Andreas Krause
54
122
0
29 Jan 2018
Efficient exploration with Double Uncertain Value Networks
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
49
42
0
29 Nov 2017
Distributional Reinforcement Learning with Quantile Regression
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
92
760
0
27 Oct 2017
The Uncertainty Bellman Equation and Exploration
Brendan O'Donoghue
Ian Osband
Rémi Munos
Volodymyr Mnih
68
192
0
15 Sep 2017
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
96
1,504
0
21 Jul 2017
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
79
895
0
30 Jun 2017
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
57
596
0
06 Jun 2017
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
94
773
0
15 Nov 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
174
1,478
0
06 Jun 2016
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
121
1,309
0
15 Feb 2016
A Variational Analysis of Stochastic Gradient Algorithms
Stephan Mandt
Matthew D. Hoffman
David M. Blei
55
161
0
08 Feb 2016
Dueling Network Architectures for Deep Reinforcement Learning
Ziyun Wang
Tom Schaul
Matteo Hessel
H. V. Hasselt
Marc Lanctot
Nando de Freitas
OffRL
91
3,755
0
20 Nov 2015
Prioritized Experience Replay
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
OffRL
220
3,789
0
18 Nov 2015
Deep Reinforcement Learning with Double Q-learning
H. V. Hasselt
A. Guez
David Silver
OffRL
170
7,641
0
22 Sep 2015
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
320
13,248
0
09 Sep 2015
Massively Parallel Methods for Deep Reinforcement Learning
Arun Nair
Praveen Srinivasan
Sam Blackwell
Cagdas Alcicek
Rory Fearon
...
Stig Petersen
Shane Legg
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
OffRL
AI4CE
GNN
96
503
0
15 Jul 2015
Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models
Bradly C. Stadie
Sergey Levine
Pieter Abbeel
92
505
0
03 Jul 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
829
9,318
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
187
1,887
0
20 May 2015
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDL
UQCV
95
1,043
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Learning to Optimize via Information-Directed Sampling
Daniel Russo
Benjamin Van Roy
163
283
0
21 Mar 2014
Generalization and Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Zheng Wen
79
314
0
04 Feb 2014
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
117
3,006
0
19 Jul 2012
1