Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.07520
Cited By
Entropy-Constrained Training of Deep Neural Networks
18 December 2018
Simon Wiedemann
Arturo Marbán
K. Müller
Wojciech Samek
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Entropy-Constrained Training of Deep Neural Networks"
24 / 24 papers shown
Title
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
64
1,355
0
07 Mar 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
89
1,012
0
26 Feb 2019
Compact and Computationally Efficient Representation of Deep Neural Networks
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
63
70
0
27 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
55
214
0
22 May 2018
Universal Deep Neural Network Compression
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
MQ
93
87
0
07 Feb 2018
Learning Sparse Neural Networks through
L
0
L_0
L
0
Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
425
1,144
0
04 Dec 2017
Improved Bayesian Compression
Marco Federici
Karen Ullrich
Max Welling
UQCV
BDL
41
19
0
17 Nov 2017
A Survey of Model Compression and Acceleration for Deep Neural Networks
Yu Cheng
Duo Wang
Pan Zhou
Zhang Tao
72
1,095
0
23 Oct 2017
Learning Discrete Weights Using the Local Reparameterization Trick
Oran Shayer
Dan Levi
Ethan Fetaya
38
88
0
21 Oct 2017
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
68
1,189
0
28 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
278
2,262
0
24 Jun 2017
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
161
479
0
24 May 2017
Soft Weight-Sharing for Neural Network Compression
Karen Ullrich
Edward Meeds
Max Welling
164
417
0
13 Feb 2017
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
139
828
0
19 Jan 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
334
4,625
0
10 Nov 2016
Dynamic Network Surgery for Efficient DNNs
Yiwen Guo
Anbang Yao
Yurong Chen
79
1,059
0
16 Aug 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
161
4,353
0
16 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
390
17,453
0
17 Feb 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
187
1,348
0
08 Feb 2016
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
206
2,984
0
02 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
253
8,832
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
310
6,669
0
08 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
220
1,510
0
08 Jun 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
1