Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.07210
Cited By
Expanding the Reach of Federated Learning by Reducing Client Resource Requirements
18 December 2018
S. Caldas
Jakub Konecný
H. B. McMahan
Ameet Talwalkar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Expanding the Reach of Federated Learning by Reducing Client Resource Requirements"
32 / 82 papers shown
Title
A Payload Optimization Method for Federated Recommender Systems
Farwa K. Khan
Adrian Flanagan
K. E. Tan
Z. Alamgir
Muhammad Ammad-ud-din
82
29
0
27 Jul 2021
Federated Learning with Downlink Device Selection
M. Amiri
Sanjeev R. Kulkarni
H. Vincent Poor
FedML
18
9
0
07 Jul 2021
Loss Tolerant Federated Learning
Pengyuan Zhou
Pei Fang
Pan Hui
13
16
0
08 May 2021
From Distributed Machine Learning to Federated Learning: A Survey
Ji Liu
Jizhou Huang
Yang Zhou
Xuhong Li
Shilei Ji
Haoyi Xiong
Dejing Dou
FedML
OOD
56
244
0
29 Apr 2021
Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
Mingzhe Chen
Deniz Gündüz
Kaibin Huang
Walid Saad
M. Bennis
Aneta Vulgarakis Feljan
H. Vincent Poor
45
402
0
05 Apr 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
34
5
0
13 Mar 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
189
268
0
26 Feb 2021
Fairness and Accuracy in Federated Learning
Wei Huang
Tianrui Li
Dexian Wang
Shengdong Du
Junbo Zhang
FedML
39
52
0
18 Dec 2020
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
18
52
0
14 Dec 2020
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
39
140
0
07 Dec 2020
CatFedAvg: Optimising Communication-efficiency and Classification Accuracy in Federated Learning
D. Sarkar
Sumit Rai
Ankur Narang
FedML
26
2
0
14 Nov 2020
Throughput-Optimal Topology Design for Cross-Silo Federated Learning
Othmane Marfoq
Chuan Xu
Giovanni Neglia
Richard Vidal
FedML
67
85
0
23 Oct 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
14
116
0
22 Jul 2020
A Systematic Literature Review on Federated Machine Learning: From A Software Engineering Perspective
Sin Kit Lo
Qinghua Lu
Chen Wang
Hye-Young Paik
Liming Zhu
FedML
48
83
0
22 Jul 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
32
162
0
16 Jun 2020
Communication Efficient Federated Learning with Energy Awareness over Wireless Networks
Richeng Jin
Xiaofan He
H. Dai
36
25
0
15 Apr 2020
HFEL: Joint Edge Association and Resource Allocation for Cost-Efficient Hierarchical Federated Edge Learning
Siqi Luo
Xu Chen
Qiong Wu
Zhi Zhou
Shuai Yu
FedML
33
339
0
26 Feb 2020
Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor
M. Safaryan
Egor Shulgin
Peter Richtárik
32
61
0
20 Feb 2020
Dynamic Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
22
25
0
20 Feb 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
22
47
0
06 Feb 2020
Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach
Pengchao Han
Shiqiang Wang
K. Leung
FedML
35
175
0
14 Jan 2020
Helios: Heterogeneity-Aware Federated Learning with Dynamically Balanced Collaboration
Zirui Xu
Zhao Yang
Jinjun Xiong
Xiang Chen
FedML
24
58
0
03 Dec 2019
Secure Federated Submodel Learning
Chaoyue Niu
Fan Wu
Shaojie Tang
Lifeng Hua
Rongfei Jia
Chengfei Lv
Zhihua Wu
Guihai Chen
FedML
14
30
0
06 Nov 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
71
969
0
04 Oct 2019
Federated User Representation Learning
D. Bui
Kshitiz Malik
Jack Goetz
Honglei Liu
Seungwhan Moon
Anuj Kumar
Kang G. Shin
FedML
30
63
0
27 Sep 2019
Improving Federated Learning Personalization via Model Agnostic Meta Learning
Yihan Jiang
Jakub Konecný
Keith Rush
Sreeram Kannan
FedML
21
589
0
27 Sep 2019
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
38
447
0
26 Sep 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
21
22
0
10 Sep 2019
Federated Learning with Additional Mechanisms on Clients to Reduce Communication Costs
Xin Yao
Tianchi Huang
Chenglei Wu
Ruixiao Zhang
Lifeng Sun
FedML
18
38
0
16 Aug 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
21
30
0
30 Jul 2019
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
Xiaofei Wang
Yiwen Han
Victor C. M. Leung
Dusit Niyato
Xueqiang Yan
Xu Chen
17
977
0
19 Jul 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
19
317
0
31 May 2019
Previous
1
2