Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.06243
Cited By
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities
15 December 2018
Y. Lee
Zhao Song
Santosh Vempala
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities"
18 / 18 papers shown
Title
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
35
22
0
08 Nov 2019
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
58
154
0
24 Jul 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
45
166
0
04 May 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
41
87
0
15 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
63
253
0
08 Jan 2018
Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation
Y. Lee
Santosh Vempala
53
113
0
17 Oct 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
60
296
0
29 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
41
28
0
04 Sep 2017
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
97
106
0
23 Aug 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
82
296
0
12 Jul 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
49
101
0
16 Jun 2017
Relative Error Tensor Low Rank Approximation
Zhao Song
David P. Woodruff
Peilin Zhong
48
123
0
26 Apr 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
43
234
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
62
518
0
13 Feb 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
67
232
0
11 Jul 2016
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
74
352
0
05 May 2016
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
63
514
0
23 Dec 2014
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression
Francis R. Bach
65
164
0
25 Mar 2013
1