ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06243
  4. Cited By
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave
  Densities

Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities

15 December 2018
Y. Lee
Zhao Song
Santosh Vempala
ArXivPDFHTML

Papers citing "Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities"

18 / 18 papers shown
Title
Estimating Normalizing Constants for Log-Concave Distributions:
  Algorithms and Lower Bounds
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
35
22
0
08 Nov 2019
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
58
154
0
24 Jul 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
45
166
0
04 May 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
41
87
0
15 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
63
253
0
08 Jan 2018
Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster
  Polytope Volume Computation
Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation
Y. Lee
Santosh Vempala
53
113
0
17 Oct 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
60
296
0
29 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction
  Stochastic Gradient MCMC
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
41
28
0
04 Sep 2017
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave
  Distributions
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
97
106
0
23 Aug 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
82
296
0
12 Jul 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
49
101
0
16 Jun 2017
Relative Error Tensor Low Rank Approximation
Relative Error Tensor Low Rank Approximation
Zhao Song
David P. Woodruff
Peilin Zhong
48
123
0
26 Apr 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
43
234
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
62
518
0
13 Feb 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
67
232
0
11 Jul 2016
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
74
352
0
05 May 2016
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
63
514
0
23 Dec 2014
Adaptivity of averaged stochastic gradient descent to local strong
  convexity for logistic regression
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression
Francis R. Bach
65
164
0
25 Mar 2013
1