ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06055
  4. Cited By
Transfer learning to model inertial confinement fusion experiments

Transfer learning to model inertial confinement fusion experiments

14 December 2018
K. Humbird
J. Peterson
R. McClarren
ArXivPDFHTML

Papers citing "Transfer learning to model inertial confinement fusion experiments"

15 / 15 papers shown
Title
Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A
  Survey and Vision
Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision
Nathaniel Hudson
J. G. Pauloski
Matt Baughman
Alok V. Kamatar
Mansi Sakarvadia
...
Owen Price Skelly
Ben Blaiszik
Rick L. Stevens
Kyle Chard
Ian Foster
MedIm
29
8
0
05 Feb 2024
Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap
  with Extremely Limited Data
Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data
M. Olson
Shusen Liu
Jayaraman J. Thiagarajan
B. Kustowski
Weng-Keen Wong
Rushil Anirudh
AI4CE
41
1
0
06 Dec 2023
Transfer learning for predicting source terms of principal component
  transport in chemically reactive flow
Transfer learning for predicting source terms of principal component transport in chemically reactive flow
Kisung Jung
T. Echekki
Jacqueline H. Chen
Mohammad Khalil
22
0
0
01 Dec 2023
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
34
63
0
30 Nov 2022
Transfer Learning as a Method to Reproduce High-Fidelity NLTE Opacities
  in Simulations
Transfer Learning as a Method to Reproduce High-Fidelity NLTE Opacities in Simulations
Michael D. Vander Wal
R. McClarren
K. Humbird
AI4CE
27
4
0
28 May 2022
Transfer learning driven design optimization for inertial confinement
  fusion
Transfer learning driven design optimization for inertial confinement fusion
K. Humbird
J. Peterson
37
6
0
26 May 2022
Transfer Learning of High-Fidelity Opacity Spectra in Autoencoders and
  Surrogate Models
Transfer Learning of High-Fidelity Opacity Spectra in Autoencoders and Surrogate Models
Michael D. Vander Wal
R. McClarren
K. Humbird
AI4CE
28
6
0
02 Mar 2022
Neural Network Surrogate Models for Absorptivity and Emissivity Spectra
  of Multiple Elements
Neural Network Surrogate Models for Absorptivity and Emissivity Spectra of Multiple Elements
Michael D. Vander Wal
R. McClarren
K. Humbird
AI4CE
15
7
0
04 Jun 2021
Suppressing simulation bias using multi-modal data
Suppressing simulation bias using multi-modal data
B. Kustowski
J. Gaffney
B. Spears
G. Anderson
Rushil Anirudh
P. Bremer
Jayaraman J. Thiagarajan
G. Kruse
Ryan Nora
AI4CE
11
14
0
19 Apr 2021
Cognitive simulation models for inertial confinement fusion: Combining
  simulation and experimental data
Cognitive simulation models for inertial confinement fusion: Combining simulation and experimental data
K. Humbird
J. Peterson
J. Salmonson
B. Spears
8
21
0
19 Mar 2021
Identifying Entangled Physics Relationships through Sparse Matrix
  Decomposition to Inform Plasma Fusion Design
Identifying Entangled Physics Relationships through Sparse Matrix Decomposition to Inform Plasma Fusion Design
Maria Fernandez
M. Grosskopf
Julia B. Nakhleh
B. Wilson
J. Kline
G. Srinivasan
8
7
0
28 Oct 2020
Exploring Sensitivity of ICF Outputs to Design Parameters in Experiments
  Using Machine Learning
Exploring Sensitivity of ICF Outputs to Design Parameters in Experiments Using Machine Learning
Julia B. Nakhleh
M. G. Fernández-Godino
M. Grosskopf
B. Wilson
J. Kline
G. Srinivasan
21
7
0
08 Oct 2020
$ξ$-torch: differentiable scientific computing library
ξξξ-torch: differentiable scientific computing library
M. F. Kasim
S. Vinko
AI4CE
8
5
0
05 Oct 2020
Complete CVDL Methodology for Investigating Hydrodynamic Instabilities
Complete CVDL Methodology for Investigating Hydrodynamic Instabilities
Reém Harel
M. Rusanovsky
Yehonatan Fridman
A. Shimony
Gal Oren
AI4CE
20
6
0
03 Apr 2020
Sim-to-Real Domain Adaptation For High Energy Physics
Sim-to-Real Domain Adaptation For High Energy Physics
M. Baalouch
Maxime Defurne
Jean-Philippe Poli
Noëlie Cherrier
AI4CE
8
4
0
17 Dec 2019
1