Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.04368
Cited By
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression
11 December 2018
Yuchao Li
Shaohui Lin
Baochang Zhang
Jianzhuang Liu
David Doermann
Yongjian Wu
Feiyue Huang
R. Ji
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression"
9 / 9 papers shown
Title
Sauron U-Net: Simple automated redundancy elimination in medical image segmentation via filter pruning
Juan Miguel Valverde
Artem Shatillo
Jussi Tohka
AAML
21
5
0
27 Sep 2022
Efficient CNN with uncorrelated Bag of Features pooling
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
M. Gabbouj
25
2
0
22 Sep 2022
Survey: Exploiting Data Redundancy for Optimization of Deep Learning
Jou-An Chen
Wei Niu
Bin Ren
Yanzhi Wang
Xipeng Shen
21
24
0
29 Aug 2022
Revisiting Random Channel Pruning for Neural Network Compression
Yawei Li
Kamil Adamczewski
Wen Li
Shuhang Gu
Radu Timofte
Luc Van Gool
19
81
0
11 May 2022
Class-Discriminative CNN Compression
Yuchen Liu
D. Wentzlaff
S. Kung
24
1
0
21 Oct 2021
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
22
15
0
10 Nov 2020
Self-grouping Convolutional Neural Networks
Qingbei Guo
Xiaojun Wu
J. Kittler
Zhiquan Feng
17
22
0
29 Sep 2020
Learning Filter Basis for Convolutional Neural Network Compression
Yawei Li
Shuhang Gu
Luc Van Gool
Radu Timofte
SupR
9
97
0
23 Aug 2019
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
54
116
0
07 Jun 2018
1