ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02919
  4. Cited By
When Bifidelity Meets CoKriging: An Efficient Physics-Informed
  Multifidelity Method

When Bifidelity Meets CoKriging: An Efficient Physics-Informed Multifidelity Method

7 December 2018
Xiu Yang
Xueyu Zhu
Jing Li
ArXivPDFHTML

Papers citing "When Bifidelity Meets CoKriging: An Efficient Physics-Informed Multifidelity Method"

4 / 4 papers shown
Title
Monotonic Gaussian process for physics-constrained machine learning with
  materials science applications
Monotonic Gaussian process for physics-constrained machine learning with materials science applications
Anh Tran
Kathryn A. Maupin
T. Rodgers
PINN
AI4CE
36
6
0
31 Aug 2022
Bifidelity data-assisted neural networks in nonintrusive reduced-order
  modeling
Bifidelity data-assisted neural networks in nonintrusive reduced-order modeling
Chuan Lu
Xueyu Zhu
26
11
0
01 Feb 2019
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based
  Multifidelity Method for Data-Model Convergence
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence
Xiu Yang
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
33
77
0
24 Nov 2018
Recursive co-kriging model for Design of Computer experiments with
  multiple levels of fidelity with an application to hydrodynamic
Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic
Loic Le Gratiet
AI4CE
90
293
0
02 Oct 2012
1