Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.02696
Cited By
Differentially Private Fair Learning
6 December 2018
Matthew Jagielski
Michael Kearns
Jieming Mao
Alina Oprea
Aaron Roth
Saeed Sharifi-Malvajerdi
Jonathan R. Ullman
FaML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private Fair Learning"
39 / 89 papers shown
Title
Fairness-Driven Private Collaborative Machine Learning
Dana Pessach
Tamir Tassa
E. Shmueli
FedML
33
7
0
29 Sep 2021
A Sociotechnical View of Algorithmic Fairness
Mateusz Dolata
Stefan Feuerriegel
Gerhard Schwabe
FaML
32
94
0
27 Sep 2021
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
39
56
0
23 Sep 2021
A Fairness Analysis on Private Aggregation of Teacher Ensembles
Cuong Tran
M. H. Dinh
Kyle Beiter
Ferdinando Fioretto
21
12
0
17 Sep 2021
Enforcing fairness in private federated learning via the modified method of differential multipliers
Borja Rodríguez Gálvez
Filip Granqvist
Rogier van Dalen
M. Seigel
FedML
48
52
0
17 Sep 2021
Statistical Guarantees for Fairness Aware Plug-In Algorithms
Drona Khurana
S. Ravichandran
Sparsh Jain
N. Edakunni
FaML
12
0
0
27 Jul 2021
Multiaccurate Proxies for Downstream Fairness
Emily Diana
Wesley Gill
Michael Kearns
K. Kenthapadi
Aaron Roth
Saeed Sharifi-Malvajerdi
35
21
0
09 Jul 2021
DP-SGD vs PATE: Which Has Less Disparate Impact on Model Accuracy?
Archit Uniyal
Rakshit Naidu
Sasikanth Kotti
Sahib Singh
Patrik Kenfack
Fatemehsadat Mireshghallah
Andrew Trask
19
33
0
22 Jun 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
22
36
0
10 Jun 2021
Decision Making with Differential Privacy under a Fairness Lens
Ferdinando Fioretto
Cuong Tran
Pascal Van Hentenryck
32
46
0
16 May 2021
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
FaML
30
21
0
24 Feb 2021
Investigating Trade-offs in Utility, Fairness and Differential Privacy in Neural Networks
Marlotte Pannekoek
G. Spigler
FedML
32
26
0
11 Feb 2021
Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities
Nenad Tomašev
Kevin R. McKee
Jackie Kay
Shakir Mohamed
FaML
30
86
0
03 Feb 2021
Exacerbating Algorithmic Bias through Fairness Attacks
Ninareh Mehrabi
Muhammad Naveed
Fred Morstatter
Aram Galstyan
AAML
28
67
0
16 Dec 2020
Improving Fairness and Privacy in Selection Problems
Mohammad Mahdi Khalili
Xueru Zhang
Mahed Abroshan
Somayeh Sojoudi
21
27
0
07 Dec 2020
On the Privacy Risks of Algorithmic Fairness
Hong Chang
Reza Shokri
FaML
38
110
0
07 Nov 2020
"What We Can't Measure, We Can't Understand": Challenges to Demographic Data Procurement in the Pursuit of Fairness
Mckane Andrus
Elena Spitzer
Jeffrey Brown
Alice Xiang
29
126
0
30 Oct 2020
Differentially Private Representation for NLP: Formal Guarantee and An Empirical Study on Privacy and Fairness
Lingjuan Lyu
Xuanli He
Yitong Li
35
89
0
03 Oct 2020
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach
Cuong Tran
Ferdinando Fioretto
Pascal Van Hentenryck
FedML
29
78
0
26 Sep 2020
Neither Private Nor Fair: Impact of Data Imbalance on Utility and Fairness in Differential Privacy
Tom Farrand
Fatemehsadat Mireshghallah
Sahib Singh
Andrew Trask
FedML
11
88
0
10 Sep 2020
Collaborative Fairness in Federated Learning
Lingjuan Lyu
Xinyi Xu
Qian Wang
FedML
6
188
0
27 Aug 2020
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
38
125
0
05 Aug 2020
How to Democratise and Protect AI: Fair and Differentially Private Decentralised Deep Learning
Lingjuan Lyu
Yitong Li
Karthik Nandakumar
Jiangshan Yu
Xingjun Ma
FedML
6
49
0
18 Jul 2020
Fairness without Demographics through Adversarially Reweighted Learning
Preethi Lahoti
Alex Beutel
Jilin Chen
Kang Lee
Flavien Prost
Nithum Thain
Xuezhi Wang
Ed H. Chi
FaML
19
329
0
23 Jun 2020
Fair Inputs and Fair Outputs: The Incompatibility of Fairness in Privacy and Accuracy
Bashir Rastegarpanah
M. Crovella
Krishna P. Gummadi
FaML
21
8
0
19 May 2020
Statistical Equity: A Fairness Classification Objective
Ninareh Mehrabi
Yuzhong Huang
Fred Morstatter
FaML
20
10
0
14 May 2020
Fair Learning with Private Demographic Data
Hussein Mozannar
Mesrob I. Ohannessian
Nathan Srebro
35
73
0
26 Feb 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
15
92
0
24 Feb 2020
Boosted and Differentially Private Ensembles of Decision Trees
Richard Nock
Wilko Henecka
6
2
0
26 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
76
6,103
0
10 Dec 2019
On the Legal Compatibility of Fairness Definitions
Alice Xiang
Inioluwa Deborah Raji
AILaw
FaML
11
58
0
25 Nov 2019
Auditing and Achieving Intersectional Fairness in Classification Problems
Giulio Morina
V. Oliinyk
J. Waton
Ines Marusic
K. Georgatzis
FaML
19
39
0
04 Nov 2019
Fault Tolerance of Neural Networks in Adversarial Settings
Vasisht Duddu
N. Pillai
D. V. Rao
V. Balas
SILM
AAML
27
11
0
30 Oct 2019
The Cost of a Reductions Approach to Private Fair Optimization
Daniel Alabi
41
3
0
23 Jun 2019
Towards Fair and Privacy-Preserving Federated Deep Models
Lingjuan Lyu
Jiangshan Yu
Karthik Nandakumar
Yitong Li
Xingjun Ma
Jiong Jin
Han Yu
Kee Siong Ng
FedML
16
20
0
04 Jun 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
10
467
0
28 May 2019
Multi-Differential Fairness Auditor for Black Box Classifiers
Xavier Gitiaux
Huzefa Rangwala
FaML
14
7
0
18 Mar 2019
Noise-tolerant fair classification
A. Lamy
Ziyuan Zhong
A. Menon
Nakul Verma
NoLa
15
76
0
30 Jan 2019
An Intersectional Definition of Fairness
James R. Foulds
Rashidul Islam
Kamrun Naher Keya
Shimei Pan
FaML
21
186
0
22 Jul 2018
Previous
1
2