ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02605
19
55

Disjoint Label Space Transfer Learning with Common Factorised Space

6 December 2018
Xiaobin Chang
Yongxin Yang
Tao Xiang
Timothy M. Hospedales
    DRL
ArXivPDFHTML
Abstract

In this paper, a unified approach is presented to transfer learning that addresses several source and target domain label-space and annotation assumptions with a single model. It is particularly effective in handling a challenging case, where source and target label-spaces are disjoint, and outperforms alternatives in both unsupervised and semi-supervised settings. The key ingredient is a common representation termed Common Factorised Space. It is shared between source and target domains, and trained with an unsupervised factorisation loss and a graph-based loss. With a wide range of experiments, we demonstrate the flexibility, relevance and efficacy of our method, both in the challenging cases with disjoint label spaces, and in the more conventional cases such as unsupervised domain adaptation, where the source and target domains share the same label-sets.

View on arXiv
Comments on this paper