Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.01843
Cited By
MLIC: A MaxSAT-Based framework for learning interpretable classification rules
5 December 2018
Dmitry Malioutov
Kuldeep S. Meel
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"MLIC: A MaxSAT-Based framework for learning interpretable classification rules"
20 / 20 papers shown
Title
Reasoning in Neurosymbolic AI
Son N. Tran
E. Mota
Artur Garcez
NAI
22
0
0
22 May 2025
Certifying Pareto-Optimality in Multi-Objective Maximum Satisfiability
Christoph Jabs
Jeremias Berg
Bart Bogaerts
Matti Järvisalo
40
1
0
29 Jan 2025
Efficient Exploration of the Rashomon Set of Rule Set Models
Martino Ciaperoni
Han Xiao
Aristides Gionis
75
4
0
05 Jun 2024
An Incremental MaxSAT-based Model to Learn Interpretable and Balanced Classification Rules
Antônio Carlos Souza Ferreira Júnior
Thiago Alves Rocha
64
0
0
25 Mar 2024
Explainable AI using expressive Boolean formulas
G. Rosenberg
J. K. Brubaker
M. Schuetz
Grant Salton
Zhihuai Zhu
E. Zhu
Serdar Kadioğlu
S. E. Borujeni
H. Katzgraber
58
8
0
06 Jun 2023
DeepSaDe: Learning Neural Networks that Guarantee Domain Constraint Satisfaction
Kshitij Goyal
Sebastijan Dumancic
Hendrik Blockeel
70
2
0
02 Mar 2023
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRM
XAI
126
40
0
24 Oct 2022
Eliminating The Impossible, Whatever Remains Must Be True
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
Nina Narodytska
Sasha Rubin
89
23
0
20 Jun 2022
Efficient Learning of Interpretable Classification Rules
Bishwamittra Ghosh
Dmitry Malioutov
Kuldeep S. Meel
57
8
0
14 May 2022
Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation
Mohit Kumar
Samuel Kolb
Stefano Teso
Luc de Raedt
NAI
30
14
0
08 Feb 2022
SaDe: Learning Models that Provably Satisfy Domain Constraints
Kshitij Goyal
Sebastijan Dumancic
Hendrik Blockeel
ALM
60
5
0
01 Dec 2021
Rule Generation for Classification: Scalability, Interpretability, and Fairness
Tabea E. Rober
Adia C. Lumadjeng
M. Akyuz
cS. .Ilker Birbil
111
2
0
21 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
240
675
0
20 Mar 2021
A Scalable Two Stage Approach to Computing Optimal Decision Sets
Alexey Ignatiev
Edward Lam
Peter Stuckey
Sasha Rubin
36
14
0
03 Feb 2021
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Bishwamittra Ghosh
D. Basu
Kuldeep S. Meel
159
41
0
14 Sep 2020
Computing Optimal Decision Sets with SAT
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
P. L. Bodic
FAtt
114
26
0
29 Jul 2020
IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable Classification Rules
Bishwamittra Ghosh
Kuldeep S. Meel
75
35
0
07 Jan 2020
From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning (Kay R. Amel group)
Zied Bouraoui
Antoine Cornuéjols
Thierry Denoeux
Sebastien Destercke
Didier Dubois
...
Jérôme Mengin
H. Prade
Steven Schockaert
M. Serrurier
Christel Vrain
128
14
0
13 Dec 2019
Neural-Symbolic Descriptive Action Model from Images: The Search for STRIPS
Masataro Asai
58
4
0
11 Dec 2019
Advances in Machine Learning for the Behavioral Sciences
Tomáš Kliegr
Š. Bahník
Johannes Furnkranz
38
14
0
08 Nov 2019
1