ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01555
  4. Cited By
A novel database of Children's Spontaneous Facial Expressions
  (LIRIS-CSE)
v1v2 (latest)

A novel database of Children's Spontaneous Facial Expressions (LIRIS-CSE)

4 December 2018
Rizwan Ahmed Khan
Arthur Crenn
Alexandre Meyer
S. Bouakaz
ArXiv (abs)PDFHTML

Papers citing "A novel database of Children's Spontaneous Facial Expressions (LIRIS-CSE)"

11 / 11 papers shown
Title
What Do We Understand About Convolutional Networks?
What Do We Understand About Convolutional Networks?
Isma Hadji
Richard P. Wildes
FAtt
50
98
0
23 Mar 2018
The History Began from AlexNet: A Comprehensive Survey on Deep Learning
  Approaches
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
Md. Zahangir Alom
T. Taha
C. Yakopcic
Stefan Westberg
P. Sidike
Mst Shamima Nasrin
B. Van Essen
A. Awwal
V. Asari
VLM
89
881
0
03 Mar 2018
Deep Meta-Learning: Learning to Learn in the Concept Space
Deep Meta-Learning: Learning to Learn in the Concept Space
Fengwei Zhou
Bin Wu
Zhenguo Li
SSL
56
123
0
10 Feb 2018
Real-time Convolutional Neural Networks for Emotion and Gender
  Classification
Real-time Convolutional Neural Networks for Emotion and Gender Classification
Octavio Arriaga
Matias Valdenegro-Toro
Paul G. Plöger
3DH
47
297
0
20 Oct 2017
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
251
18,240
0
02 Jun 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
468
43,658
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.6K
100,386
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,547
0
01 Sep 2014
OverFeat: Integrated Recognition, Localization and Detection using
  Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P. Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
ObjD
151
5,007
0
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,893
0
12 Nov 2013
1