ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01484
  4. Cited By
Privacy-Preserving Distributed Deep Learning for Clinical Data

Privacy-Preserving Distributed Deep Learning for Clinical Data

4 December 2018
Brett K. Beaulieu-Jones
W. Yuan
S. G. Finlayson
Zhiwei Steven Wu
    OOD
    FedML
ArXivPDFHTML

Papers citing "Privacy-Preserving Distributed Deep Learning for Clinical Data"

9 / 9 papers shown
Title
Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends
Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends
Duy M. Nguyen
Hasan Md Tusfiqur Alam
Trung Quoc Nguyen
Devansh Srivastav
H. Profitlich
Ngan Le
Daniel Sonntag
46
2
0
07 Jan 2025
Federated Learning in Multi-Center Critical Care Research: A Systematic
  Case Study using the eICU Database
Federated Learning in Multi-Center Critical Care Research: A Systematic Case Study using the eICU Database
Arash Mehrjou
Ashkan Soleymani
Annika Buchholz
J. Hetzel
Patrick Schwab
Stefan Bauer
OOD
FedML
17
4
0
20 Apr 2022
NanoBatch Privacy: Enabling fast Differentially Private learning on the
  IPU
NanoBatch Privacy: Enabling fast Differentially Private learning on the IPU
Edward H. Lee
M. M. Krell
Alexander Tsyplikhin
Victoria Rege
E. Colak
Kristen W. Yeom
FedML
21
0
0
24 Sep 2021
Does BERT Pretrained on Clinical Notes Reveal Sensitive Data?
Does BERT Pretrained on Clinical Notes Reveal Sensitive Data?
Eric P. Lehman
Sarthak Jain
Karl Pichotta
Yoav Goldberg
Byron C. Wallace
OOD
MIACV
24
119
0
15 Apr 2021
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Privacy-preserving Artificial Intelligence Techniques in Biomedicine
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
David B. Blumenthal
T. Kacprowski
M. List
...
Harald H. H. W. Schmidt
A. Schwalber
Christof Tschohl
Andrea Wohner
Jan Baumbach
26
60
0
22 Jul 2020
SPEED: Secure, PrivatE, and Efficient Deep learning
SPEED: Secure, PrivatE, and Efficient Deep learning
Arnaud Grivet Sébert
Rafael Pinot
Martin Zuber
Cédric Gouy-Pailler
Renaud Sirdey
FedML
15
20
0
16 Jun 2020
Revisiting Membership Inference Under Realistic Assumptions
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
24
147
0
21 May 2020
Federated and Differentially Private Learning for Electronic Health
  Records
Federated and Differentially Private Learning for Electronic Health Records
Stephen R. Pfohl
Andrew M. Dai
Katherine A. Heller
OOD
FedML
26
49
0
13 Nov 2019
Evaluating Differentially Private Machine Learning in Practice
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
15
7
0
24 Feb 2019
1