ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.01214
  4. Cited By
Prototype-based Neural Network Layers: Incorporating Vector Quantization

Prototype-based Neural Network Layers: Incorporating Vector Quantization

4 December 2018
S. Saralajew
Lars Holdijk
Maike Rees
T. Villmann
    MQ
ArXivPDFHTML

Papers citing "Prototype-based Neural Network Layers: Incorporating Vector Quantization"

4 / 4 papers shown
Title
Interpretable Models Capable of Handling Systematic Missingness in
  Imbalanced Classes and Heterogeneous Datasets
Interpretable Models Capable of Handling Systematic Missingness in Imbalanced Classes and Heterogeneous Datasets
Sreejita Ghosh
E. Baranowski
Michael Biehl
W. Arlt
Peter Tiño
the United Kingdom Utrecht University
23
6
0
04 Jun 2022
Online Deterministic Annealing for Classification and Clustering
Online Deterministic Annealing for Classification and Clustering
Christos N. Mavridis
John S. Baras
ODL
22
17
0
11 Feb 2021
Towards Explainable Deep Neural Networks (xDNN)
Towards Explainable Deep Neural Networks (xDNN)
Plamen Angelov
Eduardo Soares
AAML
27
256
0
05 Dec 2019
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
1