Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.00984
Cited By
Protection Against Reconstruction and Its Applications in Private Federated Learning
3 December 2018
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Protection Against Reconstruction and Its Applications in Private Federated Learning"
24 / 74 papers shown
Title
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
39
140
0
07 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Federated Model Distillation with Noise-Free Differential Privacy
Lichao Sun
Lingjuan Lyu
FedML
29
106
0
11 Sep 2020
NoPeek: Information leakage reduction to share activations in distributed deep learning
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
24
84
0
20 Aug 2020
Fast-Convergent Federated Learning
Hung T. Nguyen
Vikash Sehwag
Seyyedali Hosseinalipour
Christopher G. Brinton
M. Chiang
H. Vincent Poor
FedML
28
192
0
26 Jul 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
14
116
0
22 Jul 2020
A Systematic Literature Review on Federated Machine Learning: From A Software Engineering Perspective
Sin Kit Lo
Qinghua Lu
Chen Wang
Hye-Young Paik
Liming Zhu
FedML
48
83
0
22 Jul 2020
SPEED: Secure, PrivatE, and Efficient Deep learning
Arnaud Grivet Sébert
Rafael Pinot
Martin Zuber
Cédric Gouy-Pailler
Renaud Sirdey
FedML
15
20
0
16 Jun 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
32
162
0
16 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
22
18
0
14 Jun 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
24
147
0
21 May 2020
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
51
182
0
11 May 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
202
436
0
04 Mar 2020
PrivacyFL: A simulator for privacy-preserving and secure federated learning
Vaikkunth Mugunthan
Anton Peraire-Bueno
Lalana Kagal
FedML
16
57
0
19 Feb 2020
Federated Extra-Trees with Privacy Preserving
Yang Liu
Mingxi Chen
Wenxi Zhang
Junbo Zhang
Yu Zheng
FedML
28
3
0
18 Feb 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
22
38
0
16 Jan 2020
Towards Deep Federated Defenses Against Malware in Cloud Ecosystems
Josh Payne
A. Kundu
FedML
21
10
0
27 Dec 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
71
969
0
04 Oct 2019
Differentially Private Meta-Learning
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
35
106
0
12 Sep 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
21
30
0
30 Jul 2019
The Privacy Blanket of the Shuffle Model
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
42
236
0
07 Mar 2019
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
15
7
0
24 Feb 2019
Lower Bounds for Locally Private Estimation via Communication Complexity
John C. Duchi
Ryan M. Rogers
13
93
0
01 Feb 2019
Geometric Lower Bounds for Distributed Parameter Estimation under Communication Constraints
Yanjun Han
Ayfer Özgür
Tsachy Weissman
40
90
0
23 Feb 2018
Previous
1
2