Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.12469
Cited By
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
29 November 2018
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity"
46 / 96 papers shown
Title
Label Leakage and Protection from Forward Embedding in Vertical Federated Learning
Jiankai Sun
Xin Yang
Yuanshun Yao
Chong-Jun Wang
FedML
36
37
0
02 Mar 2022
Differentially Private Speaker Anonymization
Ali Shahin Shamsabadi
B. M. L. Srivastava
A. Bellet
Nathalie Vauquier
Emmanuel Vincent
Mohamed Maouche
Marc Tommasi
Nicolas Papernot
MIACV
46
33
0
23 Feb 2022
Differential Secrecy for Distributed Data and Applications to Robust Differentially Secure Vector Summation
Kunal Talwar
FedML
33
10
0
22 Feb 2022
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Andreas Terzis
Abhradeep Thakurta
36
100
0
28 Jan 2022
Privacy Amplification via Shuffling for Linear Contextual Bandits
Evrard Garcelon
Kamalika Chaudhuri
Vianney Perchet
Matteo Pirotta
FedML
35
18
0
11 Dec 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
13
102
0
17 Nov 2021
Tight Bounds for Differentially Private Anonymized Histograms
Pasin Manurangsi
PICV
27
6
0
05 Nov 2021
Optimal Compression of Locally Differentially Private Mechanisms
Abhin Shah
Wei-Ning Chen
Johannes Ballé
Peter Kairouz
Lucas Theis
35
42
0
29 Oct 2021
User-Level Private Learning via Correlated Sampling
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
40
13
0
21 Oct 2021
Label differential privacy via clustering
Hossein Esfandiari
Vahab Mirrokni
Umar Syed
Sergei Vassilvitskii
FedML
26
26
0
05 Oct 2021
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
65
36
0
27 Sep 2021
Private Retrieval, Computing and Learning: Recent Progress and Future Challenges
S. Ulukus
Salman Avestimehr
Michael C. Gastpar
S. Jafar
Ravi Tandon
Chao Tian
FedML
30
64
0
30 Jul 2021
Defending against Reconstruction Attack in Vertical Federated Learning
Jiankai Sun
Yuanshun Yao
Weihao Gao
Junyuan Xie
Chong-Jun Wang
AAML
FedML
24
28
0
21 Jul 2021
An Efficient DP-SGD Mechanism for Large Scale NLP Models
Christophe Dupuy
Radhika Arava
Rahul Gupta
Anna Rumshisky
SyDa
18
35
0
14 Jul 2021
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
31
25
0
17 Jun 2021
Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
FedML
32
48
0
08 Jun 2021
On the Renyi Differential Privacy of the Shuffle Model
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
A. Suresh
Peter Kairouz
19
44
0
11 May 2021
Privacy Amplification for Federated Learning via User Sampling and Wireless Aggregation
Mohamed Seif
Wei-Ting Chang
Ravi Tandon
FedML
20
45
0
02 Mar 2021
Differential Privacy and Byzantine Resilience in SGD: Do They Add Up?
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
33
30
0
16 Feb 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
44
232
0
12 Feb 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
42
144
0
11 Feb 2021
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
44
39
0
09 Dec 2020
Free Gap Estimates from the Exponential Mechanism, Sparse Vector, Noisy Max and Related Algorithms
Zeyu Ding
Yuxin Wang
Yingtai Xiao
Guanhong Wang
Danfeng Zhang
Daniel Kifer
31
6
0
02 Dec 2020
On Distributed Differential Privacy and Counting Distinct Elements
Lijie Chen
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
23
29
0
21 Sep 2020
Federated Learning with Sparsification-Amplified Privacy and Adaptive Optimization
Rui Hu
Yanmin Gong
Yuanxiong Guo
FedML
18
54
0
01 Aug 2020
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
14
116
0
22 Jul 2020
Connecting Robust Shuffle Privacy and Pan-Privacy
Victor Balcer
Albert Cheu
Matthew Joseph
Jieming Mao
FedML
20
41
0
20 Apr 2020
DP-Cryptography: Marrying Differential Privacy and Cryptography in Emerging Applications
Sameer Wagh
Xi He
Ashwin Machanavajjhala
Prateek Mittal
28
21
0
19 Apr 2020
LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale
Ryan M. Rogers
S. Subramaniam
Sean Peng
D. Durfee
Seunghyun Lee
Santosh Kumar Kancha
Shraddha Sahay
P. Ahammad
27
77
0
14 Feb 2020
Pure Differentially Private Summation from Anonymous Messages
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
31
46
0
05 Feb 2020
Encode, Shuffle, Analyze Privacy Revisited: Formalizations and Empirical Evaluation
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Shuang Song
Kunal Talwar
Abhradeep Thakurta
26
83
0
10 Jan 2020
ARA : Aggregated RAPPOR and Analysis for Centralized Differential Privacy
Sudipta Paul
Subhankar Mishra
18
10
0
06 Jan 2020
The power of synergy in differential privacy: Combining a small curator with local randomizers
A. Beimel
Aleksandra Korolova
Kobbi Nissim
Or Sheffet
Uri Stemmer
34
14
0
18 Dec 2019
Separating Local & Shuffled Differential Privacy via Histograms
Victor Balcer
Albert Cheu
FedML
42
67
0
15 Nov 2019
Data Poisoning Attacks to Local Differential Privacy Protocols
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
33
76
0
05 Nov 2019
Private Aggregation from Fewer Anonymous Messages
Badih Ghazi
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
47
55
0
24 Sep 2019
Differentially Private Summation with Multi-Message Shuffling
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
19
47
0
20 Jun 2019
Scalable and Differentially Private Distributed Aggregation in the Shuffled Model
Badih Ghazi
Rasmus Pagh
A. Velingker
FedML
19
98
0
19 Jun 2019
The Role of Interactivity in Local Differential Privacy
Matthew Joseph
Jieming Mao
Seth Neel
Aaron Roth
33
65
0
07 Apr 2019
The Privacy Blanket of the Shuffle Model
Borja Balle
James Bell
Adria Gascon
Kobbi Nissim
FedML
39
236
0
07 Mar 2019
Lower Bounds for Locally Private Estimation via Communication Complexity
John C. Duchi
Ryan M. Rogers
13
93
0
01 Feb 2019
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
11
192
0
15 Dec 2018
Distributed Differential Privacy via Shuffling
Albert Cheu
Adam D. Smith
Jonathan R. Ullman
David Zeber
M. Zhilyaev
FedML
34
347
0
04 Aug 2018
The Right Complexity Measure in Locally Private Estimation: It is not the Fisher Information
John C. Duchi
Feng Ruan
15
50
0
14 Jun 2018
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
D. Song
56
1,113
0
22 Feb 2018
Local Differential Privacy for Evolving Data
Matthew Joseph
Aaron Roth
Jonathan R. Ullman
Bo Waggoner
52
86
0
20 Feb 2018
Previous
1
2