ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11971
  4. Cited By
Simple stopping criteria for information theoretic feature selection

Simple stopping criteria for information theoretic feature selection

29 November 2018
Shujian Yu
José C. Príncipe
ArXivPDFHTML

Papers citing "Simple stopping criteria for information theoretic feature selection"

2 / 2 papers shown
Title
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting
  Topologies for Side-channel Analysis
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting Topologies for Side-channel Analysis
R. Acharya
F. Ganji
Domenic Forte
AAML
38
24
0
30 Apr 2021
Understanding Convolutional Neural Networks with Information Theory: An
  Initial Exploration
Understanding Convolutional Neural Networks with Information Theory: An Initial Exploration
Shujian Yu
Kristoffer Wickstrøm
Robert Jenssen
José C. Príncipe
6
73
0
18 Apr 2018
1