ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.11731
11
64

CAPNet: Continuous Approximation Projection For 3D Point Cloud Reconstruction Using 2D Supervision

28 November 2018
L. NavaneetK.
Priyanka Mandikal
Mayank Agarwal
R. Venkatesh Babu
    3DV
    3DPC
ArXivPDFHTML
Abstract

Knowledge of 3D properties of objects is a necessity in order to build effective computer vision systems. However, lack of large scale 3D datasets can be a major constraint for data-driven approaches in learning such properties. We consider the task of single image 3D point cloud reconstruction, and aim to utilize multiple foreground masks as our supervisory data to alleviate the need for large scale 3D datasets. A novel differentiable projection module, called 'CAPNet', is introduced to obtain such 2D masks from a predicted 3D point cloud. The key idea is to model the projections as a continuous approximation of the points in the point cloud. To overcome the challenges of sparse projection maps, we propose a loss formulation termed áffinity loss' to generate outlier-free reconstructions. We significantly outperform the existing projection based approaches on a large-scale synthetic dataset. We show the utility and generalizability of such a 2D supervised approach through experiments on a real-world dataset, where lack of 3D data can be a serious concern. To further enhance the reconstructions, we also propose a test stage optimization procedure to obtain reconstructions that display high correspondence with the observed input image.

View on arXiv
Comments on this paper