ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10866
  4. Cited By
Exploiting Numerical Sparsity for Efficient Learning : Faster
  Eigenvector Computation and Regression

Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and Regression

27 November 2018
Neha Gupta
Aaron Sidford
ArXivPDFHTML

Papers citing "Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and Regression"

8 / 8 papers shown
Title
Stochastic Primal-Dual Method for Empirical Risk Minimization with
  $\mathcal{O}(1)$ Per-Iteration Complexity
Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1)\mathcal{O}(1)O(1) Per-Iteration Complexity
Conghui Tan
Tong Zhang
Shiqian Ma
Ji Liu
ODL
41
32
0
03 Nov 2018
Leverage Score Sampling for Faster Accelerated Regression and ERM
Leverage Score Sampling for Faster Accelerated Regression and ERM
Naman Agarwal
Sham Kakade
Rahul Kidambi
Y. Lee
Praneeth Netrapalli
Aaron Sidford
103
21
0
22 Nov 2017
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and
  Hardness
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and Hardness
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
Shashanka Ubaru
David P. Woodruff
96
36
0
13 Apr 2017
Efficient Estimation of Partially Linear Models for Spatial Data over
  Complex Domain
Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
50
78
0
27 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
96
580
0
18 Mar 2016
Un-regularizing: approximate proximal point and faster stochastic
  algorithms for empirical risk minimization
Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization
Roy Frostig
Rong Ge
Sham Kakade
Aaron Sidford
60
150
0
24 Jun 2015
Near-Optimal Entrywise Sampling for Data Matrices
Near-Optimal Entrywise Sampling for Data Matrices
D. Achlioptas
Zohar Karnin
Edo Liberty
61
42
0
19 Nov 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
174
1,033
0
10 Sep 2012
1