Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.10866
Cited By
Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and Regression
27 November 2018
Neha Gupta
Aaron Sidford
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and Regression"
8 / 8 papers shown
Title
Stochastic Primal-Dual Method for Empirical Risk Minimization with
O
(
1
)
\mathcal{O}(1)
O
(
1
)
Per-Iteration Complexity
Conghui Tan
Tong Zhang
Shiqian Ma
Ji Liu
ODL
41
32
0
03 Nov 2018
Leverage Score Sampling for Faster Accelerated Regression and ERM
Naman Agarwal
Sham Kakade
Rahul Kidambi
Y. Lee
Praneeth Netrapalli
Aaron Sidford
103
21
0
22 Nov 2017
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and Hardness
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
Shashanka Ubaru
David P. Woodruff
96
36
0
13 Apr 2017
Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
50
78
0
27 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
96
580
0
18 Mar 2016
Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization
Roy Frostig
Rong Ge
Sham Kakade
Aaron Sidford
60
150
0
24 Jun 2015
Near-Optimal Entrywise Sampling for Data Matrices
D. Achlioptas
Zohar Karnin
Edo Liberty
61
42
0
19 Nov 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
174
1,033
0
10 Sep 2012
1