ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.09716
  4. Cited By
Robustness via curvature regularization, and vice versa

Robustness via curvature regularization, and vice versa

23 November 2018
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
    AAML
ArXivPDFHTML

Papers citing "Robustness via curvature regularization, and vice versa"

24 / 74 papers shown
Title
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
28
1
0
04 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
23
29
0
13 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial
  Training
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
22
11
0
22 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
On the human-recognizability phenomenon of adversarially trained deep
  image classifiers
On the human-recognizability phenomenon of adversarially trained deep image classifiers
Jonathan W. Helland
Nathan M. VanHoudnos
AAML
27
4
0
18 Dec 2020
Robustness Threats of Differential Privacy
Robustness Threats of Differential Privacy
Nurislam Tursynbek
Aleksandr Petiushko
Ivan Oseledets
AAML
22
14
0
14 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial
  Defenses
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
25
92
0
30 Nov 2020
Adversarial Classification: Necessary conditions and geometric flows
Adversarial Classification: Necessary conditions and geometric flows
Nicolas García Trillos
Ryan W. Murray
AAML
34
19
0
21 Nov 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
678
0
19 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
324
0
07 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
47
269
0
05 Oct 2020
A Geometry-Inspired Attack for Generating Natural Language Adversarial
  Examples
A Geometry-Inspired Attack for Generating Natural Language Adversarial Examples
Zhao Meng
Roger Wattenhofer
GAN
AAML
29
32
0
03 Oct 2020
Input Hessian Regularization of Neural Networks
Input Hessian Regularization of Neural Networks
Waleed Mustafa
Robert A. Vandermeulen
Marius Kloft
AAML
25
12
0
14 Sep 2020
Proper Network Interpretability Helps Adversarial Robustness in
  Classification
Proper Network Interpretability Helps Adversarial Robustness in Classification
Akhilan Boopathy
Sijia Liu
Gaoyuan Zhang
Cynthia Liu
Pin-Yu Chen
Shiyu Chang
Luca Daniel
AAML
FAtt
24
66
0
26 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine
  Learning
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
24
224
0
11 Jun 2020
Adversarial Classification via Distributional Robustness with
  Wasserstein Ambiguity
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
48
16
0
28 May 2020
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved
  Transferability
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability
H. Aghakhani
Dongyu Meng
Yu-Xiang Wang
Christopher Kruegel
Giovanni Vigna
AAML
20
105
0
01 May 2020
Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness
Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness
Pu Zhao
Pin-Yu Chen
Payel Das
K. Ramamurthy
Xue Lin
AAML
42
184
0
30 Apr 2020
On the Decision Boundaries of Neural Networks: A Tropical Geometry
  Perspective
On the Decision Boundaries of Neural Networks: A Tropical Geometry Perspective
Motasem Alfarra
Adel Bibi
Hasan Hammoud
M. Gaafar
Guohao Li
13
26
0
20 Feb 2020
An Alternative Surrogate Loss for PGD-based Adversarial Testing
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
44
89
0
21 Oct 2019
Scaleable input gradient regularization for adversarial robustness
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
What Do Adversarially Robust Models Look At?
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
19
5
0
19 May 2019
Previous
12