Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09561
Cited By
v1
v2 (latest)
An Adaptive Approach for Automated Grapevine Phenotyping using VGG-based Convolutional Neural Networks
23 November 2018
Jonatan Grimm
Katja Herzog
F. Rist
A. Kicherer
R. Töpfer
Volker Steinhage
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"An Adaptive Approach for Automated Grapevine Phenotyping using VGG-based Convolutional Neural Networks"
7 / 7 papers shown
Title
Efficient identification, localization and quantification of grapevine inflorescences in unprepared field images using Fully Convolutional Networks
Robert Rudolph
Katja Herzog
R. Töpfer
Volker Steinhage
33
14
0
10 Jul 2018
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
324
2,083
0
07 Jun 2016
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
744
37,890
0
20 May 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.1K
15,819
0
02 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.9K
77,378
0
18 May 2015
Learning Deconvolution Network for Semantic Segmentation
Hyeonwoo Noh
Seunghoon Hong
Bohyung Han
SSeg
235
4,180
0
17 May 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,508
0
04 Sep 2014
1