ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.09561
  4. Cited By
An Adaptive Approach for Automated Grapevine Phenotyping using VGG-based
  Convolutional Neural Networks
v1v2 (latest)

An Adaptive Approach for Automated Grapevine Phenotyping using VGG-based Convolutional Neural Networks

23 November 2018
Jonatan Grimm
Katja Herzog
F. Rist
A. Kicherer
R. Töpfer
Volker Steinhage
ArXiv (abs)PDFHTML

Papers citing "An Adaptive Approach for Automated Grapevine Phenotyping using VGG-based Convolutional Neural Networks"

7 / 7 papers shown
Title
Efficient identification, localization and quantification of grapevine
  inflorescences in unprepared field images using Fully Convolutional Networks
Efficient identification, localization and quantification of grapevine inflorescences in unprepared field images using Fully Convolutional Networks
Robert Rudolph
Katja Herzog
R. Töpfer
Volker Steinhage
33
14
0
10 Jul 2018
ENet: A Deep Neural Network Architecture for Real-Time Semantic
  Segmentation
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
324
2,083
0
07 Jun 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
744
37,890
0
20 May 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.1K
15,819
0
02 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,378
0
18 May 2015
Learning Deconvolution Network for Semantic Segmentation
Learning Deconvolution Network for Semantic Segmentation
Hyeonwoo Noh
Seunghoon Hong
Bohyung Han
SSeg
235
4,180
0
17 May 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
1