Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.08888
Cited By
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
21 November 2018
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks"
11 / 111 papers shown
Title
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
LipschitzLR: Using theoretically computed adaptive learning rates for fast convergence
Rahul Yedida
Snehanshu Saha
Tejas Prashanth
ODL
22
12
0
20 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
37
962
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
18
93
0
24 Jan 2019
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
41
1,122
0
09 Nov 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
23
117
0
17 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
23
243
0
12 Oct 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
125
577
0
27 Feb 2015
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Previous
1
2
3