ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08484
  4. Cited By
MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial
  Defense

MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense

20 November 2018
Rushil Anirudh
Jayaraman J. Thiagarajan
B. Kailkhura
T. Bremer
    GAN
ArXivPDFHTML

Papers citing "MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense"

13 / 13 papers shown
Title
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using
  Generative Models
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
82
1,177
0
17 May 2018
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with
  Provable Guarantees
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with Provable Guarantees
Viraj Shah
Chinmay Hegde
GAN
89
166
0
23 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
216
3,184
0
01 Feb 2018
The Robust Manifold Defense: Adversarial Training using Generative
  Models
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
56
174
0
26 Dec 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
278
8,878
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
301
12,060
0
19 Jun 2017
One Network to Solve Them All --- Solving Linear Inverse Problems using
  Deep Projection Models
One Network to Solve Them All --- Solving Linear Inverse Problems using Deep Projection Models
Jen-Hao Rick Chang
Chun-Liang Li
Barnabás Póczós
B. Kumar
Aswin C. Sankaranarayanan
57
348
0
29 Mar 2017
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
133
2,527
0
26 Oct 2016
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
242
10,686
0
15 Sep 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
534
5,897
0
08 Jul 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
269
11,149
0
14 Mar 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
248
14,005
0
19 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
148
4,895
0
14 Nov 2015
1