ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.08011
  4. Cited By
Explain to Fix: A Framework to Interpret and Correct DNN Object Detector
  Predictions

Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions

19 November 2018
Denis A. Gudovskiy
Alec Hodgkinson
Takuya Yamaguchi
Yasunori Ishii
Sotaro Tsukizawa
    FAtt
ArXivPDFHTML

Papers citing "Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions"

14 / 14 papers shown
Title
Interpreting Object-level Foundation Models via Visual Precision Search
Interpreting Object-level Foundation Models via Visual Precision Search
Ruoyu Chen
Siyuan Liang
Jingzhi Li
Shiming Liu
Maosen Li
Zheng Huang
Qichuan Geng
Xiaochun Cao
FAtt
162
4
0
25 Nov 2024
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,864
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,871
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
182
5,986
0
04 Mar 2017
Visualizing Deep Neural Network Decisions: Prediction Difference
  Analysis
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
132
708
0
15 Feb 2017
Speed/accuracy trade-offs for modern convolutional object detectors
Speed/accuracy trade-offs for modern convolutional object detectors
Jonathan Huang
V. Rathod
Chen Sun
Menglong Zhu
Anoop Korattikara Balan
...
Ian S. Fischer
Z. Wojna
Yang Song
S. Guadarrama
Kevin Patrick Murphy
3DH
3DV
91
2,572
0
30 Nov 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Explaining NonLinear Classification Decisions with Deep Taylor
  Decomposition
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
G. Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus-Robert Muller
FAtt
60
737
0
08 Dec 2015
SSD: Single Shot MultiBox Detector
SSD: Single Shot MultiBox Detector
Wen Liu
Dragomir Anguelov
D. Erhan
Christian Szegedy
Scott E. Reed
Cheng-Yang Fu
Alexander C. Berg
ObjD
BDL
229
29,816
0
08 Dec 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,667
0
21 Dec 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
271
14,710
0
20 Jun 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
309
7,292
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
591
15,876
0
12 Nov 2013
1