ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07738
  4. Cited By
M2U-Net: Effective and Efficient Retinal Vessel Segmentation for
  Resource-Constrained Environments

M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Resource-Constrained Environments

19 November 2018
Tim Laibacher
Tillman Weyde
Sepehr Jalali
ArXivPDFHTML

Papers citing "M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Resource-Constrained Environments"

1 / 1 papers shown
Title
Deep Dilated Convolutional Nets for the Automatic Segmentation of
  Retinal Vessels
Deep Dilated Convolutional Nets for the Automatic Segmentation of Retinal Vessels
Ali Hatamizadeh
H. Hosseini
Zhengyuan Liu
S. Schwartz
Demetri Terzopoulos
MedIm
11
25
0
28 May 2019
1