ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.07296
  4. Cited By
GAN-QP: A Novel GAN Framework without Gradient Vanishing and Lipschitz
  Constraint
v1v2v3v4 (latest)

GAN-QP: A Novel GAN Framework without Gradient Vanishing and Lipschitz Constraint

18 November 2018
Jianlin Su
    GAN
ArXiv (abs)PDFHTML

Papers citing "GAN-QP: A Novel GAN Framework without Gradient Vanishing and Lipschitz Constraint"

12 / 12 papers shown
Title
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
162
4,444
0
16 Feb 2018
Wasserstein Divergence for GANs
Wasserstein Divergence for GANs
Jiqing Wu
Zhiwu Huang
Janine Thoma
Dinesh Acharya
Luc Van Gool
75
139
0
04 Dec 2017
Progressive Growing of GANs for Improved Quality, Stability, and
  Variation
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras
Timo Aila
S. Laine
J. Lehtinen
GAN
166
7,376
0
27 Oct 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,560
0
31 Mar 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
177
4,827
0
26 Jan 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
83
2,112
0
17 Jan 2017
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
340
4,577
0
13 Nov 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
158
1,659
0
02 Jun 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
85
1,314
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
142
0
31 May 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
271
14,023
0
19 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
1