ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06992
  4. Cited By
Image Classification at Supercomputer Scale

Image Classification at Supercomputer Scale

16 November 2018
Chris Ying
Sameer Kumar
Dehao Chen
Tao Wang
Youlong Cheng
    VLM
ArXivPDFHTML

Papers citing "Image Classification at Supercomputer Scale"

20 / 20 papers shown
Title
Spreeze: High-Throughput Parallel Reinforcement Learning Framework
Spreeze: High-Throughput Parallel Reinforcement Learning Framework
Jing Hou
Guang Chen
Ruiqi Zhang
Zhijun Li
Shangding Gu
Changjun Jiang
OffRL
32
2
0
11 Dec 2023
CODEBench: A Neural Architecture and Hardware Accelerator Co-Design
  Framework
CODEBench: A Neural Architecture and Hardware Accelerator Co-Design Framework
Shikhar Tuli
Chia-Hao Li
Ritvik Sharma
N. Jha
38
14
0
07 Dec 2022
Large-batch Optimization for Dense Visual Predictions
Large-batch Optimization for Dense Visual Predictions
Zeyue Xue
Jianming Liang
Guanglu Song
Zhuofan Zong
Liang Chen
Yu Liu
Ping Luo
VLM
39
9
0
20 Oct 2022
Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning
  Preprocessing Pipelines
Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning Preprocessing Pipelines
Alexander Isenko
R. Mayer
Jeffrey Jedele
Hans-Arno Jacobsen
19
23
0
17 Feb 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
30
14
0
01 Nov 2021
Concurrent Adversarial Learning for Large-Batch Training
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
33
13
0
01 Jun 2021
Data Movement Is All You Need: A Case Study on Optimizing Transformers
Data Movement Is All You Need: A Case Study on Optimizing Transformers
A. Ivanov
Nikoli Dryden
Tal Ben-Nun
Shigang Li
Torsten Hoefler
36
131
0
30 Jun 2020
The Limit of the Batch Size
The Limit of the Batch Size
Yang You
Yuhui Wang
Huan Zhang
Zhao-jie Zhang
J. Demmel
Cho-Jui Hsieh
8
15
0
15 Jun 2020
Communication optimization strategies for distributed deep neural
  network training: A survey
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
30
12
0
06 Mar 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Distributed Low Precision Training Without Mixed Precision
Distributed Low Precision Training Without Mixed Precision
Zehua Cheng
Weiyan Wang
Yan Pan
Thomas Lukasiewicz
MQ
18
5
0
18 Nov 2019
MLPerf Training Benchmark
MLPerf Training Benchmark
Arya D. McCarthy
Christine Cheng
Cody Coleman
Greg Diamos
Paulius Micikevicius
...
Carole-Jean Wu
Lingjie Xu
Masafumi Yamazaki
C. Young
Matei A. Zaharia
38
305
0
02 Oct 2019
Taming Momentum in a Distributed Asynchronous Environment
Taming Momentum in a Distributed Asynchronous Environment
Ido Hakimi
Saar Barkai
Moshe Gabel
Assaf Schuster
19
23
0
26 Jul 2019
Faster Neural Network Training with Data Echoing
Faster Neural Network Training with Data Echoing
Dami Choi
Alexandre Passos
Christopher J. Shallue
George E. Dahl
23
48
0
12 Jul 2019
Parameterized Structured Pruning for Deep Neural Networks
Parameterized Structured Pruning for Deep Neural Networks
Günther Schindler
Wolfgang Roth
Franz Pernkopf
Holger Froening
24
6
0
12 Jun 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
28
985
0
01 Apr 2019
Augment your batch: better training with larger batches
Augment your batch: better training with larger batches
Elad Hoffer
Tal Ben-Nun
Itay Hubara
Niv Giladi
Torsten Hoefler
Daniel Soudry
ODL
30
72
0
27 Jan 2019
Large-Batch Training for LSTM and Beyond
Large-Batch Training for LSTM and Beyond
Yang You
Jonathan Hseu
Chris Ying
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
23
89
0
24 Jan 2019
Demystifying Parallel and Distributed Deep Learning: An In-Depth
  Concurrency Analysis
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
33
703
0
26 Feb 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,892
0
15 Sep 2016
1