ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06272
  4. Cited By
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search

Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search

15 November 2018
Lars Buesing
T. Weber
Yori Zwols
S. Racanière
A. Guez
Jean-Baptiste Lespiau
N. Heess
    CML
ArXivPDFHTML

Papers citing "Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search"

33 / 33 papers shown
Title
Null Counterfactual Factor Interactions for Goal-Conditioned Reinforcement Learning
Null Counterfactual Factor Interactions for Goal-Conditioned Reinforcement Learning
Caleb Chuck
Fan Feng
Carl Qi
Chang Shi
Siddhant Agarwal
Amy Zhang
S. Niekum
47
0
0
06 May 2025
D3HRL: A Distributed Hierarchical Reinforcement Learning Approach Based on Causal Discovery and Spurious Correlation Detection
D3HRL: A Distributed Hierarchical Reinforcement Learning Approach Based on Causal Discovery and Spurious Correlation Detection
Chenran Zhao
Dianxi Shi
Mengzhu Wang
Jianqiang Xia
Huanhuan Yang
Songchang Jin
Shaowu Yang
Chunping Qiu
40
0
0
04 May 2025
CAIMAN: Causal Action Influence Detection for Sample-efficient Loco-manipulation
CAIMAN: Causal Action Influence Detection for Sample-efficient Loco-manipulation
Yuanchen Yuan
Jin Cheng
Núria Armengol Urpí
Stelian Coros
74
1
0
02 Feb 2025
Counterfactual Token Generation in Large Language Models
Counterfactual Token Generation in Large Language Models
Ivi Chatzi
N. C. Benz
Eleni Straitouri
Stratis Tsirtsis
Manuel Gomez Rodriguez
LRM
36
3
0
25 Sep 2024
BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning
BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning
Hao-ming Lin
Wenhao Ding
Jian Chen
Laixi Shi
Jiacheng Zhu
Bo-wen Li
Ding Zhao
OffRL
CML
54
0
0
15 Jul 2024
Counterfactual Influence in Markov Decision Processes
Counterfactual Influence in Markov Decision Processes
M. Kazemi
Jessica Lally
Ekaterina Tishchenko
Hana Chockler
Nicola Paoletti
23
1
0
13 Feb 2024
Finding Counterfactually Optimal Action Sequences in Continuous State
  Spaces
Finding Counterfactually Optimal Action Sequences in Continuous State Spaces
Stratis Tsirtsis
Manuel Gomez Rodriguez
CML
OffRL
30
9
0
06 Jun 2023
Q-Cogni: An Integrated Causal Reinforcement Learning Framework
Q-Cogni: An Integrated Causal Reinforcement Learning Framework
C. Cunha
Wei Liu
T. French
Ajmal Mian
26
1
0
26 Feb 2023
Towards Computationally Efficient Responsibility Attribution in
  Decentralized Partially Observable MDPs
Towards Computationally Efficient Responsibility Attribution in Decentralized Partially Observable MDPs
Stelios Triantafyllou
Goran Radanović
19
5
0
24 Feb 2023
Counterfactuals for the Future
Counterfactuals for the Future
Lucius E.J. Bynum
Joshua R. Loftus
Julia Stoyanovich
33
10
0
07 Dec 2022
Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments
Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments
Daniel Jarrett
Corentin Tallec
Florent Altché
Thomas Mesnard
Rémi Munos
Michal Valko
48
5
0
18 Nov 2022
Counterfactual Data Augmentation via Perspective Transition for
  Open-Domain Dialogues
Counterfactual Data Augmentation via Perspective Transition for Open-Domain Dialogues
Jiao Ou
Jinchao Zhang
Yang Feng
Jie Zhou
38
13
0
30 Oct 2022
MoCoDA: Model-based Counterfactual Data Augmentation
MoCoDA: Model-based Counterfactual Data Augmentation
Silviu Pitis
Elliot Creager
Ajay Mandlekar
Animesh Garg
OffRL
48
33
0
20 Oct 2022
Counterfactual Analysis in Dynamic Latent State Models
Counterfactual Analysis in Dynamic Latent State Models
Martin Haugh
Raghav Singal
CML
31
6
0
27 May 2022
Counterfactual harm
Counterfactual harm
Jonathan G. Richens
R. Beard
Daniel H. Thompson
29
27
0
27 Apr 2022
Counterfactual Temporal Point Processes
Counterfactual Temporal Point Processes
Kimia Noorbakhsh
Manuel Gomez Rodriguez
22
22
0
15 Nov 2021
Causal Multi-Agent Reinforcement Learning: Review and Open Problems
Causal Multi-Agent Reinforcement Learning: Review and Open Problems
St John Grimbly
Jonathan P. Shock
Arnu Pretorius
44
17
0
12 Nov 2021
Accelerating the Learning of TAMER with Counterfactual Explanations
Accelerating the Learning of TAMER with Counterfactual Explanations
Jakob Karalus
F. Lindner
OffRL
29
4
0
03 Aug 2021
Did I do that? Blame as a means to identify controlled effects in
  reinforcement learning
Did I do that? Blame as a means to identify controlled effects in reinforcement learning
Oriol Corcoll
Youssef Mohamed
Raul Vicente
21
3
0
01 Jun 2021
Instrumental Variable Value Iteration for Causal Offline Reinforcement
  Learning
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
18
34
0
19 Feb 2021
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
  Augmentation
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation
Chaochao Lu
Erdun Gao
Ke Wang
José Miguel Hernández-Lobato
Kun Zhang
Bernhard Schölkopf
CML
OOD
OffRL
26
56
0
16 Dec 2020
Causal Campbell-Goodhart's law and Reinforcement Learning
Causal Campbell-Goodhart's law and Reinforcement Learning
Hal Ashton
CML
11
4
0
02 Nov 2020
Forethought and Hindsight in Credit Assignment
Forethought and Hindsight in Credit Assignment
Veronica Chelu
Doina Precup
H. V. Hasselt
22
25
0
26 Oct 2020
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with
  Latent Confounders
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders
Andrew Bennett
Nathan Kallus
Lihong Li
Ali Mousavi
OffRL
35
43
0
27 Jul 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDL
OffRL
26
85
0
06 Jul 2020
Learning "What-if" Explanations for Sequential Decision-Making
Learning "What-if" Explanations for Sequential Decision-Making
Ioana Bica
Daniel Jarrett
Alihan Huyuk
M. Schaar
OffRL
21
2
0
02 Jul 2020
Causally Correct Partial Models for Reinforcement Learning
Causally Correct Partial Models for Reinforcement Learning
Danilo Jimenez Rezende
Ivo Danihelka
George Papamakarios
Nan Rosemary Ke
Ray Jiang
...
Jane X. Wang
Jovana Mitrović
F. Besse
Ioannis Antonoglou
Lars Buesing
AI4TS
24
32
0
07 Feb 2020
Learning to Predict Without Looking Ahead: World Models Without Forward
  Prediction
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction
C. Freeman
Luke Metz
David R Ha
33
35
0
29 Oct 2019
Causal Modeling for Fairness in Dynamical Systems
Causal Modeling for Fairness in Dynamical Systems
Elliot Creager
David Madras
T. Pitassi
R. Zemel
13
67
0
18 Sep 2019
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal
  Models
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models
Michael Oberst
David Sontag
CML
OffRL
21
168
0
14 May 2019
Deconfounding Reinforcement Learning in Observational Settings
Deconfounding Reinforcement Learning in Observational Settings
Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
CML
OOD
25
73
0
26 Dec 2018
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
719
0
12 May 2016
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
236
7,906
0
13 Jun 2015
1