Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.04896
Cited By
TED: Teaching AI to Explain its Decisions
12 November 2018
Michael Hind
Dennis L. Wei
Murray Campbell
Noel Codella
Amit Dhurandhar
Aleksandra Mojsilović
Karthikeyan N. Ramamurthy
Kush R. Varshney
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TED: Teaching AI to Explain its Decisions"
19 / 19 papers shown
Title
Explainable AI: Definition and attributes of a good explanation for health AI
E. Kyrimi
S. McLachlan
Jared M Wohlgemut
Zane B Perkins
David A. Lagnado
W. Marsh
the ExAIDSS Expert Group
XAI
36
1
0
09 Sep 2024
Are Data-driven Explanations Robust against Out-of-distribution Data?
Tang Li
Fengchun Qiao
Mengmeng Ma
Xiangkai Peng
OODD
OOD
43
10
0
29 Mar 2023
Towards Prototype-Based Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
33
12
0
05 Oct 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
40
11
0
13 May 2022
Study of Feature Importance for Quantum Machine Learning Models
Aaron Baughman
Kavitha Yogaraj
Rajat Hebbar
S. Ghosh
R. Haq
Yoshika Chhabra
21
12
0
18 Feb 2022
Explanatory Learning: Beyond Empiricism in Neural Networks
Antonio Norelli
Giorgio Mariani
Luca Moschella
Andrea Santilli
Giambattista Parascandolo
Simone Melzi
Emanuele Rodolà
14
2
0
25 Jan 2022
Image Classification with Consistent Supporting Evidence
Peiqi Wang
Ruizhi Liao
Daniel Moyer
Seth Berkowitz
Steven Horng
Polina Golland
49
2
0
13 Nov 2021
Towards Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
36
84
0
26 Aug 2021
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
34
140
0
17 May 2021
Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction
Aniruddh Raghu
John Guttag
K. Young
E. Pomerantsev
Adrian Dalca
Collin M. Stultz
13
9
0
04 Mar 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
68
415
0
15 Feb 2021
Expanding Explainability: Towards Social Transparency in AI systems
Upol Ehsan
Q. V. Liao
Michael J. Muller
Mark O. Riedl
Justin D. Weisz
43
394
0
12 Jan 2021
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction
Esther Puyol-Antón
Chong Chen
J. Clough
B. Ruijsink
B. Sidhu
...
M. Elliott
Vishal S. Mehta
Daniel Rueckert
C. Rinaldi
A. King
21
32
0
24 Jun 2020
Don't Explain without Verifying Veracity: An Evaluation of Explainable AI with Video Activity Recognition
Mahsan Nourani
Chiradeep Roy
Tahrima Rahman
Eric D. Ragan
Nicholas Ruozzi
Vibhav Gogate
AAML
15
17
0
05 May 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
38
218
0
01 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
52
371
0
30 Apr 2020
xCos: An Explainable Cosine Metric for Face Verification Task
Yu-sheng Lin
Zhe-Yu Liu
Yu-An Chen
Yu-Siang Wang
Ya-Liang Chang
Winston H. Hsu
CVBM
33
46
0
11 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1