ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04383
  4. Cited By
Adapting multi-armed bandits policies to contextual bandits scenarios

Adapting multi-armed bandits policies to contextual bandits scenarios

11 November 2018
David Cortes
ArXivPDFHTML

Papers citing "Adapting multi-armed bandits policies to contextual bandits scenarios"

3 / 3 papers shown
Title
Harnessing the Power of Federated Learning in Federated Contextual
  Bandits
Harnessing the Power of Federated Learning in Federated Contextual Bandits
Chengshuai Shi
Ruida Zhou
Kun Yang
Cong Shen
FedML
33
0
0
26 Dec 2023
AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning
AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning
Young Geun Kim
Carole-Jean Wu
26
85
0
16 Jul 2021
Open Bandit Dataset and Pipeline: Towards Realistic and Reproducible
  Off-Policy Evaluation
Open Bandit Dataset and Pipeline: Towards Realistic and Reproducible Off-Policy Evaluation
Yuta Saito
Shunsuke Aihara
Megumi Matsutani
Yusuke Narita
OffRL
24
73
0
17 Aug 2020
1