ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04110
  4. Cited By
Reducing Network Agnostophobia

Reducing Network Agnostophobia

9 November 2018
A. Dhamija
Manuel Günther
Terrance E. Boult
    AAML
    UQCV
ArXivPDFHTML

Papers citing "Reducing Network Agnostophobia"

9 / 59 papers shown
Title
A Critical Evaluation of Open-World Machine Learning
A Critical Evaluation of Open-World Machine Learning
Liwei Song
Vikash Sehwag
A. Bhagoji
Prateek Mittal
AAML
24
8
0
08 Jul 2020
Density of States Estimation for Out-of-Distribution Detection
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
24
84
0
16 Jun 2020
DeepStreamCE: A Streaming Approach to Concept Evolution Detection in
  Deep Neural Networks
DeepStreamCE: A Streaming Approach to Concept Evolution Detection in Deep Neural Networks
Lorraine Chambers
M. Gaber
Zahraa S Abdallah
21
4
0
08 Apr 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning
  from Out-of-distribution Data
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
24
561
0
26 Feb 2020
Open Set Medical Diagnosis
Open Set Medical Diagnosis
Viraj Prabhu
A. Kannan
Geoffrey Tso
Namit Katariya
Manish Chablani
David Sontag
X. Amatriain
23
9
0
07 Oct 2019
Entropic Out-of-Distribution Detection
Entropic Out-of-Distribution Detection
David Macêdo
T. I. Ren
Cleber Zanchettin
Adriano Oliveira
Teresa B Ludermir
OODD
UQCV
25
32
0
15 Aug 2019
Recent Advances in Open Set Recognition: A Survey
Recent Advances in Open Set Recognition: A Survey
Chuanxing Geng
Sheng-Jun Huang
Songcan Chen
BDL
ObjD
59
759
0
21 Nov 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
Previous
12