ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03733
  4. Cited By
Universal Decision-Based Black-Box Perturbations: Breaking
  Security-Through-Obscurity Defenses

Universal Decision-Based Black-Box Perturbations: Breaking Security-Through-Obscurity Defenses

9 November 2018
T. A. Hogan
B. Kailkhura
    AAML
ArXivPDFHTML

Papers citing "Universal Decision-Based Black-Box Perturbations: Breaking Security-Through-Obscurity Defenses"

4 / 4 papers shown
Title
On the Design of Black-box Adversarial Examples by Leveraging
  Gradient-free Optimization and Operator Splitting Method
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method
Pu Zhao
Sijia Liu
Pin-Yu Chen
Nghia Hoang
Kaidi Xu
B. Kailkhura
Xue Lin
AAML
32
54
0
26 Jul 2019
Generative Counterfactual Introspection for Explainable Deep Learning
Generative Counterfactual Introspection for Explainable Deep Learning
Shusen Liu
B. Kailkhura
Donald Loveland
Yong Han
25
90
0
06 Jul 2019
Reliable and Explainable Machine Learning Methods for Accelerated
  Material Discovery
Reliable and Explainable Machine Learning Methods for Accelerated Material Discovery
B. Kailkhura
Brian Gallagher
Sookyung Kim
A. Hiszpanski
T. Y. Han
19
153
0
05 Jan 2019
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
332
5,849
0
08 Jul 2016
1