Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03568
Cited By
A Geometric Approach of Gradient Descent Algorithms in Linear Neural Networks
8 November 2018
S. Mahabadi
Zhenyu Liao
Romain Couillet
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Geometric Approach of Gradient Descent Algorithms in Linear Neural Networks"
5 / 5 papers shown
Title
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
41
3
0
06 Mar 2023
The loss landscape of deep linear neural networks: a second-order analysis
El Mehdi Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
26
9
0
28 Jul 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
27
23
0
09 Jul 2021
First-order Methods Almost Always Avoid Saddle Points
Jason D. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
95
83
0
20 Oct 2017
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
1