ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03422
  4. Cited By
Explaining Deep Learning Models - A Bayesian Non-parametric Approach

Explaining Deep Learning Models - A Bayesian Non-parametric Approach

7 November 2018
Wenbo Guo
Sui Huang
Yunzhe Tao
Masashi Sugiyama
Lin Lin
    BDL
ArXivPDFHTML

Papers citing "Explaining Deep Learning Models - A Bayesian Non-parametric Approach"

9 / 9 papers shown
Title
Generative Perturbation Analysis for Probabilistic Black-Box Anomaly
  Attribution
Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution
T. Idé
Naoki Abe
43
4
0
09 Aug 2023
A Survey on Graph-Based Deep Learning for Computational Histopathology
A Survey on Graph-Based Deep Learning for Computational Histopathology
David Ahmedt-Aristizabal
M. Armin
Simon Denman
Clinton Fookes
L. Petersson
GNN
AI4CE
26
108
0
01 Jul 2021
Parameterized Explainer for Graph Neural Network
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
53
542
0
09 Nov 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
29
162
0
11 Aug 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
TSInsight: A local-global attribution framework for interpretability in
  time-series data
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
16
12
0
06 Apr 2020
Interpretability of Blackbox Machine Learning Models through Dataview
  Extraction and Shadow Model creation
Interpretability of Blackbox Machine Learning Models through Dataview Extraction and Shadow Model creation
Rupam Patir
Shubham Singhal
C. Anantaram
Vikram Goyal
16
0
0
02 Feb 2020
Automated Dependence Plots
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
40
205
0
27 Oct 2019
1