Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03422
Cited By
Explaining Deep Learning Models - A Bayesian Non-parametric Approach
7 November 2018
Wenbo Guo
Sui Huang
Yunzhe Tao
Masashi Sugiyama
Lin Lin
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Deep Learning Models - A Bayesian Non-parametric Approach"
9 / 9 papers shown
Title
Generative Perturbation Analysis for Probabilistic Black-Box Anomaly Attribution
T. Idé
Naoki Abe
43
4
0
09 Aug 2023
A Survey on Graph-Based Deep Learning for Computational Histopathology
David Ahmedt-Aristizabal
M. Armin
Simon Denman
Clinton Fookes
L. Petersson
GNN
AI4CE
26
108
0
01 Jul 2021
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
53
542
0
09 Nov 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
29
162
0
11 Aug 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
16
12
0
06 Apr 2020
Interpretability of Blackbox Machine Learning Models through Dataview Extraction and Shadow Model creation
Rupam Patir
Shubham Singhal
C. Anantaram
Vikram Goyal
16
0
0
02 Feb 2020
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
40
205
0
27 Oct 2019
1