ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.03205
  4. Cited By
Robustness of Conditional GANs to Noisy Labels

Robustness of Conditional GANs to Noisy Labels

8 November 2018
Kerry J. Halupka
A. Khetan
Zinan Lin
Stephen Moore
    NoLa
ArXivPDFHTML

Papers citing "Robustness of Conditional GANs to Noisy Labels"

50 / 56 papers shown
Title
Slight Corruption in Pre-training Data Makes Better Diffusion Models
Slight Corruption in Pre-training Data Makes Better Diffusion Models
Hao Chen
Yujin Han
Diganta Misra
Xiang Li
Kai Hu
Difan Zou
Masashi Sugiyama
Jindong Wang
Bhiksha Raj
DiffM
47
5
0
30 May 2024
Label-Noise Robust Diffusion Models
Label-Noise Robust Diffusion Models
Byeonghu Na
Yeongmin Kim
Heesun Bae
Jung Hyun Lee
Seho Kwon
Wanmo Kang
Il-Chul Moon
NoLa
DiffM
50
8
0
27 Feb 2024
Fusing Conditional Submodular GAN and Programmatic Weak Supervision
Fusing Conditional Submodular GAN and Programmatic Weak Supervision
Kumar Shubham
Pranav Sastry
AP Prathosh
21
1
0
16 Dec 2023
On Measuring Fairness in Generative Models
On Measuring Fairness in Generative Models
Christopher T. H. Teo
Milad Abdollahzadeh
Ngai-man Cheung
EGVM
22
5
0
30 Oct 2023
Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
  Uncurated Unlabeled Data
Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and Uncurated Unlabeled Data
Kai Katsumata
D. Vo
Tatsuya Harada
Hideki Nakayama
31
0
0
17 Jul 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
38
9
0
30 Jan 2023
PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for
  Learning with Noisy Labels
PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for Learning with Noisy Labels
Huaxi Huang
Hui-Sung Kang
Sheng Liu
Olivier Salvado
Thierry Rakotoarivelo
Dadong Wang
Tongliang Liu
NoLa
25
7
0
07 Dec 2022
Establishment of Neural Networks Robust to Label Noise
Establishment of Neural Networks Robust to Label Noise
Pengwei Yang
Angel Teng
Jack Mangos
NoLa
14
0
0
28 Nov 2022
Dynamic-Pix2Pix: Noise Injected cGAN for Modeling Input and Target
  Domain Joint Distributions with Limited Training Data
Dynamic-Pix2Pix: Noise Injected cGAN for Modeling Input and Target Domain Joint Distributions with Limited Training Data
Mohammadreza Naderi
N. Karimi
Ali Emami
S. Shirani
S. Samavi
18
0
0
15 Nov 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao W. Wang
C. Yuan
21
3
0
11 Oct 2022
Learning to segment fetal brain tissue from noisy annotations
Learning to segment fetal brain tissue from noisy annotations
Davood Karimi
C. Rollins
C. Velasco-Annis
Abdelhakim Ouaalam
Ali Gholipour
18
25
0
25 Mar 2022
Generative Modeling Helps Weak Supervision (and Vice Versa)
Generative Modeling Helps Weak Supervision (and Vice Versa)
Benedikt Boecking
Nicholas Roberts
W. Neiswanger
Stefano Ermon
Frederic Sala
Artur Dubrawski
23
1
0
22 Mar 2022
Do We Need to Penalize Variance of Losses for Learning with Label Noise?
Do We Need to Penalize Variance of Losses for Learning with Label Noise?
Yexiong Lin
Yu Yao
Yuxuan Du
Jun Yu
Bo Han
Mingming Gong
Tongliang Liu
NoLa
41
3
0
30 Jan 2022
Improved Input Reprogramming for GAN Conditioning
Improved Input Reprogramming for GAN Conditioning
Tuan Dinh
Daewon Seo
Zhixu Du
Liang Shang
Kangwook Lee
AI4CE
22
8
0
07 Jan 2022
Learning with Noisy Labels by Efficient Transition Matrix Estimation to
  Combat Label Miscorrection
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
31
15
0
29 Nov 2021
Dual Projection Generative Adversarial Networks for Conditional Image
  Generation
Dual Projection Generative Adversarial Networks for Conditional Image Generation
Ligong Han
Martin Renqiang Min
Anastasis Stathopoulos
Yu Tian
Ruijiang Gao
Asim Kadav
Dimitris N. Metaxas
GAN
33
21
0
20 Aug 2021
Sample Selection with Uncertainty of Losses for Learning with Noisy
  Labels
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Mingming Gong
Jun Yu
Gang Niu
Masashi Sugiyama
NoLa
15
110
0
01 Jun 2021
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep
  Neural Network
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network
Shuo Yang
Erkun Yang
Bo Han
Yang Liu
Min Xu
Gang Niu
Tongliang Liu
NoLa
BDL
24
42
0
27 May 2021
Regularizing Generative Adversarial Networks under Limited Data
Regularizing Generative Adversarial Networks under Limited Data
Hung-Yu Tseng
Lu Jiang
Ce Liu
Ming-Hsuan Yang
Weilong Yang
GAN
22
142
0
07 Apr 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
124
120
0
04 Feb 2021
Video Summarization Using Deep Neural Networks: A Survey
Video Summarization Using Deep Neural Networks: A Survey
Evlampios Apostolidis
E. Adamantidou
Alexandros I. Metsai
Vasileios Mezaris
Ioannis Patras
AI4TS
62
201
0
15 Jan 2021
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
141
660
0
28 Dec 2020
Semantically Robust Unpaired Image Translation for Data with Unmatched
  Semantics Statistics
Semantically Robust Unpaired Image Translation for Data with Unmatched Semantics Statistics
Zhiwei Jia
Bodi Yuan
Kangkang Wang
Hong Wu
David Clifford
Zhiqiang Yuan
Hao Su
VLM
36
21
0
09 Dec 2020
End-to-End Learning from Noisy Crowd to Supervised Machine Learning
  Models
End-to-End Learning from Noisy Crowd to Supervised Machine Learning Models
Taraneh Younesian
Chi Hong
Amirmasoud Ghiassi
Robert Birke
L. Chen
NoLa
FedML
8
3
0
13 Nov 2020
Identifying Mislabeled Images in Supervised Learning Utilizing
  Autoencoder
Identifying Mislabeled Images in Supervised Learning Utilizing Autoencoder
Yunhao Yang
Andrew Whinston
16
5
0
07 Nov 2020
GANs for learning from very high class conditional noisy labels
GANs for learning from very high class conditional noisy labels
Sandhya Tripathi
N. Hemachandra
GAN
6
1
0
19 Oct 2020
Beyond $\mathcal{H}$-Divergence: Domain Adaptation Theory With
  Jensen-Shannon Divergence
Beyond H\mathcal{H}H-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
35
22
0
30 Jul 2020
TrustNet: Learning from Trusted Data Against (A)symmetric Label Noise
TrustNet: Learning from Trusted Data Against (A)symmetric Label Noise
Amirmasoud Ghiassi
Taraneh Younesian
Robert Birke
L. Chen
NoLa
16
5
0
13 Jul 2020
ExpertNet: Adversarial Learning and Recovery Against Noisy Labels
ExpertNet: Adversarial Learning and Recovery Against Noisy Labels
Amirmasoud Ghiassi
Robert Birke
Rui Han
L. Chen
NoLa
14
2
0
10 Jul 2020
A Le Cam Type Bound for Adversarial Learning and Applications
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
16
1
0
01 Jul 2020
Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled
  Learning and Conditional Generation with Extra Data
Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled Learning and Conditional Generation with Extra Data
Bin-Xia Yu
Ke Sun
He-Nan Wang
Zhouchen Lin
Zhanxing Zhu
9
0
0
14 Jun 2020
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Part-dependent Label Noise: Towards Instance-dependent Label Noise
Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Mingming Gong
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
NoLa
11
67
0
14 Jun 2020
Multi-Level Generative Models for Partial Label Learning with Non-random
  Label Noise
Multi-Level Generative Models for Partial Label Learning with Non-random Label Noise
Yan Yan
Yuhong Guo
6
13
0
11 May 2020
Robust Generative Adversarial Network
Robust Generative Adversarial Network
Shufei Zhang
Zhuang Qian
Kaizhu Huang
Jimin Xiao
Yuan He
14
8
0
28 Apr 2020
Blur, Noise, and Compression Robust Generative Adversarial Networks
Blur, Noise, and Compression Robust Generative Adversarial Networks
Takuhiro Kaneko
Tatsuya Harada
10
17
0
17 Mar 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
817
0
20 Jan 2020
Generative Pseudo-label Refinement for Unsupervised Domain Adaptation
Generative Pseudo-label Refinement for Unsupervised Domain Adaptation
Pietro Morerio
Riccardo Volpi
R. Ragonesi
Vittorio Murino
8
47
0
09 Jan 2020
Image Classification with Deep Learning in the Presence of Noisy Labels:
  A Survey
Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey
G. Algan
ilkay Ulusoy
NoLa
VLM
19
322
0
11 Dec 2019
Deep learning with noisy labels: exploring techniques and remedies in
  medical image analysis
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
11
534
0
05 Dec 2019
Noise Robust Generative Adversarial Networks
Noise Robust Generative Adversarial Networks
Takuhiro Kaneko
Tatsuya Harada
NoLa
OOD
22
30
0
26 Nov 2019
Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons
Robust Conditional GAN from Uncertainty-Aware Pairwise Comparisons
Ligong Han
Ruijiang Gao
Mun Kim
Xin Tao
Bo Liu
Dimitris N. Metaxas
14
14
0
21 Nov 2019
RAD: On-line Anomaly Detection for Highly Unreliable Data
RAD: On-line Anomaly Detection for Highly Unreliable Data
Zilong Zhao
Robert Birke
Rui Han
Bogdan Robu
S. Bouchenak
Sonia Ben Mokhtar
L. Chen
AAML
9
6
0
11 Nov 2019
Using GANs for Sharing Networked Time Series Data: Challenges, Initial
  Promise, and Open Questions
Using GANs for Sharing Networked Time Series Data: Challenges, Initial Promise, and Open Questions
Zinan Lin
Alankar Jain
Chen Wang
Giulia Fanti
Vyas Sekar
17
22
0
30 Sep 2019
Adversarial Partial Multi-Label Learning
Adversarial Partial Multi-Label Learning
Yan Yan
Yuhong Guo
GAN
14
17
0
15 Sep 2019
Twin Auxiliary Classifiers GAN
Twin Auxiliary Classifiers GAN
Mingming Gong
Yanwu Xu
Chunyuan Li
Kuncai Zhang
Kayhan Batmanghelich
16
33
0
05 Jul 2019
Robust conditional GANs under missing or uncertain labels
Robust conditional GANs under missing or uncertain labels
K. K. Thekumparampil
Sewoong Oh
A. Khetan
OOD
GAN
17
5
0
09 Jun 2019
A Generative Framework for Zero-Shot Learning with Adversarial Domain
  Adaptation
A Generative Framework for Zero-Shot Learning with Adversarial Domain Adaptation
V. Khare
Divyat Mahajan
Homanga Bharadhwaj
Vinay K. Verma
Piyush Rai
VLM
20
16
0
07 Jun 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
11
369
0
01 Jun 2019
Characterizing Bias in Classifiers using Generative Models
Characterizing Bias in Classifiers using Generative Models
Daniel J. McDuff
Shuang Ma
Yale Song
Ashish Kapoor
23
47
0
30 May 2019
Label-Noise Robust Multi-Domain Image-to-Image Translation
Label-Noise Robust Multi-Domain Image-to-Image Translation
Takuhiro Kaneko
Tatsuya Harada
22
3
0
06 May 2019
12
Next