Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03179
Cited By
How Well Generative Adversarial Networks Learn Distributions
7 November 2018
Tengyuan Liang
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Well Generative Adversarial Networks Learn Distributions"
24 / 24 papers shown
Title
Scalable Sobolev IPM for Probability Measures on a Graph
Tam Le
Truyen V. Nguyen
H. Hino
Kenji Fukumizu
60
0
0
02 Feb 2025
Nested Annealed Training Scheme for Generative Adversarial Networks
Chang Wan
Ming-Hsuan Yang
Minglu Li
Yunliang Jiang
Zhonglong Zheng
GAN
43
0
0
20 Jan 2025
Theoretical Insights into CycleGAN: Analyzing Approximation and Estimation Errors in Unpaired Data Generation
Luwei Sun
Dongrui Shen
Han Feng
43
2
0
16 Jul 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
OOD
CML
77
2
0
07 May 2024
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
44
1
0
24 Feb 2024
Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution
Elen Vardanyan
Sona Hunanyan
T. Galstyan
A. Minasyan
A. Dalalyan
42
2
0
31 Jul 2023
Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are
Siddarth Asokan
C. Seelamantula
32
4
0
01 Jun 2023
Testing for the Markov Property in Time Series via Deep Conditional Generative Learning
Yunzhe Zhou
C. Shi
Lexin Li
Q. Yao
AI4TS
38
8
0
30 May 2023
Statistical Guarantees of Group-Invariant GANs
Ziyu Chen
Markos A. Katsoulakis
Luc Rey-Bellet
Wei-wei Zhu
50
2
0
22 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
31
5
0
17 May 2023
Spider GAN: Leveraging Friendly Neighbors to Accelerate GAN Training
Siddarth Asokan
C. Seelamantula
GAN
69
1
0
12 May 2023
Constrained Policy Optimization with Explicit Behavior Density for Offline Reinforcement Learning
Jing Zhang
Chi Zhang
Wenjia Wang
Bing-Yi Jing
OffRL
35
7
0
28 Jan 2023
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
22
1
0
05 Dec 2022
Distribution estimation and change-point estimation for time series via DNN-based GANs
Jianya Lu
Ying Mo
Zhijie Xiao
Lihu Xu
Qiuran Yao
AI4TS
36
0
0
26 Nov 2022
Asymptotic Statistical Analysis of
f
f
f
-divergence GAN
Xinwei Shen
Kani Chen
Tong Zhang
33
2
0
14 Sep 2022
α
α
α
-GAN: Convergence and Estimation Guarantees
Gowtham R. Kurri
Monica Welfert
Tyler Sypherd
Lalitha Sankar
GAN
98
8
0
12 May 2022
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
32
4
0
07 Feb 2022
Optimal 1-Wasserstein Distance for WGANs
Arthur Stéphanovitch
Ugo Tanielian
B. Cadre
N. Klutchnikoff
Gérard Biau
OT
GAN
20
3
0
08 Jan 2022
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Y. Hur
Wenxuan Guo
Tengyuan Liang
36
9
0
28 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
29
0
30 Aug 2021
Realizing GANs via a Tunable Loss Function
Gowtham R. Kurri
Tyler Sypherd
Lalitha Sankar
GAN
14
16
0
09 Jun 2021
Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin
S. Samsonov
Denis Belomestny
Eric Moulines
A. Naumov
37
10
0
30 Jan 2021
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
29
25
0
04 Nov 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
33
821
0
20 Jan 2020
1