ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02834
  4. Cited By
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties

Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties

7 November 2018
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
    OT
ArXivPDFHTML

Papers citing "Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties"

17 / 17 papers shown
Title
Metric properties of partial and robust Gromov-Wasserstein distances
Metric properties of partial and robust Gromov-Wasserstein distances
Jannatul Chhoa
Michael Ivanitskiy
Fushuai Jiang
Shiying Li
Daniel McBride
Tom Needham
Kaiying O'Hare
31
0
0
04 Nov 2024
Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein
  Distance
Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein Distance
Junjie Yang
Matthieu Labeau
Steeven Villa
OT
24
1
0
28 Sep 2023
Robust Attributed Graph Alignment via Joint Structure Learning and
  Optimal Transport
Robust Attributed Graph Alignment via Joint Structure Learning and Optimal Transport
Jianheng Tang
Jiexia Ye
Jiajin Li
Kangfei Zhao
Fugee Tsung
Jia Li
OT
15
18
0
30 Jan 2023
Regularized Optimal Transport Layers for Generalized Global Pooling
  Operations
Regularized Optimal Transport Layers for Generalized Global Pooling Operations
Hongteng Xu
Minjie Cheng
36
4
0
13 Dec 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
InfoOT: Information Maximizing Optimal Transport
InfoOT: Information Maximizing Optimal Transport
Ching-Yao Chuang
Stefanie Jegelka
David Alvarez-Melis
OT
35
12
0
06 Oct 2022
Metric Distribution to Vector: Constructing Data Representation via
  Broad-Scale Discrepancies
Metric Distribution to Vector: Constructing Data Representation via Broad-Scale Discrepancies
Xue Liu
Dan Sun
X. Cao
Hao Ye
Wei Wei
20
0
0
02 Oct 2022
Universal Mappings and Analysis of Functional Data on Geometric Domains
Universal Mappings and Analysis of Functional Data on Geometric Domains
Soheil Anbouhi
W. Mio
Osman Berat Okutan
13
1
0
09 Aug 2022
Aligning individual brains with Fused Unbalanced Gromov-Wasserstein
Aligning individual brains with Fused Unbalanced Gromov-Wasserstein
Alexis Thual
Huy Tran
Tatiana Zemskova
Nicolas Courty
Rémi Flamary
S. Dehaene
B. Thirion
OT
22
24
0
19 Jun 2022
Efficient Approximation of Gromov-Wasserstein Distance Using Importance
  Sparsification
Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification
Mengyu Li
Jun Yu
Hongteng Xu
Cheng Meng
26
13
0
26 May 2022
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph
  Data
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph Data
Jiajin Li
Jianheng Tang
Lemin Kong
Huikang Liu
Jia Li
Anthony Man-Cho So
Jose H. Blanchet
36
1
0
17 May 2022
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
35
23
0
06 Oct 2021
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Hongteng Xu
Dixin Luo
Lawrence Carin
H. Zha
46
28
0
10 Dec 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
  Relaxation
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
22
67
0
09 Sep 2020
Generalized Spectral Clustering via Gromov-Wasserstein Learning
Generalized Spectral Clustering via Gromov-Wasserstein Learning
Samir Chowdhury
Tom Needham
16
54
0
07 Jun 2020
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
23
190
0
18 May 2019
Soft-DTW: a Differentiable Loss Function for Time-Series
Soft-DTW: a Differentiable Loss Function for Time-Series
Marco Cuturi
Mathieu Blondel
AI4TS
141
611
0
05 Mar 2017
1