ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.02438
  4. Cited By
Trainable Adaptive Window Switching for Speech Enhancement

Trainable Adaptive Window Switching for Speech Enhancement

5 November 2018
Yuma Koizumi
Noboru Harada
Y. Haneda
ArXivPDFHTML

Papers citing "Trainable Adaptive Window Switching for Speech Enhancement"

13 / 13 papers shown
Title
Data-driven design of perfect reconstruction filterbank for DNN-based
  sound source enhancement
Data-driven design of perfect reconstruction filterbank for DNN-based sound source enhancement
Daiki Takeuchi
Kohei Yatabe
Yuma Koizumi
Yasuhiro Oikawa
Noboru Harada
38
13
0
21 Mar 2019
Deep Griffin-Lim Iteration
Deep Griffin-Lim Iteration
Yoshiki Masuyama
Kohei Yatabe
Yuma Koizumi
Yasuhiro Oikawa
Noboru Harada
63
55
0
10 Mar 2019
DNN-based Source Enhancement to Increase Objective Sound Quality
  Assessment Score
DNN-based Source Enhancement to Increase Objective Sound Quality Assessment Score
Yuma Koizumi
Kenta Niwa
Yusuke Hioka
Kazunori Kobayashi
Y. Haneda
29
63
0
22 Oct 2018
End-to-end Networks for Supervised Single-channel Speech Separation
End-to-end Networks for Supervised Single-channel Speech Separation
Shrikant Venkataramani
Paris Smaragdis
54
10
0
05 Oct 2018
Phasebook and Friends: Leveraging Discrete Representations for Source
  Separation
Phasebook and Friends: Leveraging Discrete Representations for Source Separation
Jonathan Le Roux
Gordon Wichern
Shinji Watanabe
Andy M. Sarroff
J. Hershey
47
77
0
02 Oct 2018
Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for
  Speech Separation
Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation
Yi Luo
N. Mesgarani
144
1,783
0
20 Sep 2018
Generative adversarial network-based approach to signal reconstruction
  from magnitude spectrograms
Generative adversarial network-based approach to signal reconstruction from magnitude spectrograms
Keisuke Oyamada
Hirokazu Kameoka
Takuhiro Kaneko
Kou Tanaka
Nobukatsu Hojo
Hiroyasu Ando
GAN
40
29
0
06 Apr 2018
Supervised Speech Separation Based on Deep Learning: An Overview
Supervised Speech Separation Based on Deep Learning: An Overview
DeLiang Wang
Jitong Chen
SSL
66
1,370
0
24 Aug 2017
End-to-end Source Separation with Adaptive Front-Ends
End-to-end Source Separation with Adaptive Front-Ends
Shrikant Venkataramani
Jonah Casebeer
Paris Smaragdis
41
72
0
06 May 2017
Multi-talker Speech Separation with Utterance-level Permutation
  Invariant Training of Deep Recurrent Neural Networks
Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks
Morten Kolbaek
Dong Yu
Zheng-Hua Tan
Jesper Jensen
55
725
0
18 Mar 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
257
5,360
0
03 Nov 2016
Deep clustering: Discriminative embeddings for segmentation and
  separation
Deep clustering: Discriminative embeddings for segmentation and separation
J. Hershey
Zhuo Chen
Jonathan Le Roux
Shinji Watanabe
60
1,317
0
18 Aug 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.3K
149,842
0
22 Dec 2014
1