ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.01900
  4. Cited By
Janossy Pooling: Learning Deep Permutation-Invariant Functions for
  Variable-Size Inputs

Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs

5 November 2018
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Yun Liang
ArXivPDFHTML

Papers citing "Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs"

39 / 39 papers shown
Title
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Yang Ji
Ying Sun
Hengshu Zhu
46
0
0
17 Mar 2025
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
51
4
0
20 Oct 2024
Scalable Graph Compressed Convolutions
Scalable Graph Compressed Convolutions
Junshu Sun
Chen Yang
Shuhui Wang
Qingming Huang
GNN
45
0
0
26 Jul 2024
Baking Symmetry into GFlowNets
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Yoshua Bengio
Dinghuai Zhang
45
8
0
08 Jun 2024
Uniform $\mathcal{C}^k$ Approximation of $G$-Invariant and Antisymmetric
  Functions, Embedding Dimensions, and Polynomial Representations
Uniform Ck\mathcal{C}^kCk Approximation of GGG-Invariant and Antisymmetric Functions, Embedding Dimensions, and Polynomial Representations
Soumya Ganguly
Khoa Tran
Rahul Sarkar
38
0
0
02 Mar 2024
Overcoming Order in Autoregressive Graph Generation
Overcoming Order in Autoregressive Graph Generation
Edo Cohen-Karlik
Eyal Rozenberg
Daniel Freedman
34
1
0
04 Feb 2024
Neural Discovery of Permutation Subgroups
Neural Discovery of Permutation Subgroups
Pavan Karjol
Rohan Kashyap
A. Prathosh
28
3
0
11 Sep 2023
The Expressive Power of Graph Neural Networks: A Survey
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
On the Connection Between MPNN and Graph Transformer
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong Son-Hy
Rose Yu
Yusu Wang
36
51
0
27 Jan 2023
Learnable Commutative Monoids for Graph Neural Networks
Learnable Commutative Monoids for Graph Neural Networks
Euan Ong
Petar Velickovic
18
12
0
16 Dec 2022
SELTO: Sample-Efficient Learned Topology Optimization
SELTO: Sample-Efficient Learned Topology Optimization
Sören Dittmer
David Erzmann
Henrik Harms
Peter Maass
32
2
0
12 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
73
24
0
01 Sep 2022
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
  Sequence Modeling
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDL
UQCV
19
99
0
09 Jul 2022
Universally Expressive Communication in Multi-Agent Reinforcement
  Learning
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
Exponential Separations in Symmetric Neural Networks
Exponential Separations in Symmetric Neural Networks
Aaron Zweig
Joan Bruna
29
7
0
02 Jun 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
  in Larger Test Graphs
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
78
37
0
30 May 2022
Theory of Graph Neural Networks: Representation and Learning
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
Equilibrium Aggregation: Encoding Sets via Optimization
Equilibrium Aggregation: Encoding Sets via Optimization
Sergey Bartunov
F. Fuchs
Timothy Lillicrap
24
7
0
25 Feb 2022
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
SLOSH: Set LOcality Sensitive Hashing via Sliced-Wasserstein Embeddings
Yuzhe Lu
Xinran Liu
Andrea Soltoggio
Soheil Kolouri
8
7
0
11 Dec 2021
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
Neural Operator: Learning Maps Between Function Spaces
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
40
440
0
19 Aug 2021
Universal Approximation of Functions on Sets
Universal Approximation of Functions on Sets
E. Wagstaff
F. Fuchs
Martin Engelcke
Michael A. Osborne
Ingmar Posner
PINN
35
54
0
05 Jul 2021
You are AllSet: A Multiset Function Framework for Hypergraph Neural
  Networks
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks
Eli Chien
Chao Pan
Jianhao Peng
O. Milenkovic
GNN
41
128
0
24 Jun 2021
NodePiece: Compositional and Parameter-Efficient Representations of
  Large Knowledge Graphs
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs
Mikhail Galkin
E. Denis
Jiapeng Wu
William L. Hamilton
OCL
25
86
0
23 Jun 2021
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
347
0
18 Feb 2021
Regularizing Towards Permutation Invariance in Recurrent Models
Regularizing Towards Permutation Invariance in Recurrent Models
Edo Cohen-Karlik
Avichai Ben David
Amir Globerson
OOD
16
15
0
25 Oct 2020
End-to-End Differentiable Molecular Mechanics Force Field Construction
End-to-End Differentiable Molecular Mechanics Force Field Construction
Yuanqing Wang
Josh Fass
Benjamin Kaminow
John E. Herr
Dominic Rufa
Ivy Zhang
Iván Pulido
Mike Henry
J. Chodera
19
23
0
02 Oct 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
28
111
0
28 Jun 2020
Subgraph Neural Networks
Subgraph Neural Networks
Emily Alsentzer
S. G. Finlayson
Michelle M. Li
Marinka Zitnik
GNN
18
134
0
18 Jun 2020
Multipole Graph Neural Operator for Parametric Partial Differential
  Equations
Multipole Graph Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
24
375
0
16 Jun 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
30
132
0
20 Feb 2020
Generalization and Representational Limits of Graph Neural Networks
Generalization and Representational Limits of Graph Neural Networks
Vikas K. Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
26
304
0
14 Feb 2020
Random Features Strengthen Graph Neural Networks
Random Features Strengthen Graph Neural Networks
Ryoma Sato
M. Yamada
H. Kashima
GNN
AAML
13
232
0
08 Feb 2020
Learn to Predict Sets Using Feed-Forward Neural Networks
Learn to Predict Sets Using Feed-Forward Neural Networks
H. Rezatofighi
Tianyu Zhu
Roman Kaskman
F. Motlagh
Javen Qinfeng Shi
Anton Milan
Daniel Cremers
Laura Leal-Taixé
Ian Reid
SSL
61
15
0
30 Jan 2020
On the Equivalence between Positional Node Embeddings and Structural
  Graph Representations
On the Equivalence between Positional Node Embeddings and Structural Graph Representations
Balasubramaniam Srinivasan
Bruno Ribeiro
17
27
0
01 Oct 2019
Relational Pooling for Graph Representations
Relational Pooling for Graph Representations
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
33
256
0
06 Mar 2019
Partially Exchangeable Networks and Architectures for Learning Summary
  Statistics in Approximate Bayesian Computation
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist
Pierre-Alexandre Mattei
Umberto Picchini
J. Frellsen
BDL
30
32
0
29 Jan 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,944
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1